Startseite A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

  • Do Quang Binh , Ngo Quang Huy und Nguyen Hoang Hai
Veröffentlicht/Copyright: 18. Dezember 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

Kurzfassung

In der vorliegenden Arbeit wird ein neuer Ansatz vorgestellt, der auf einem binärkodierten gemischt-ganzzahligen genetischen Algorithmus basiert in Verbindung mit der gewichteten Summenmethode für die multiobjektive Optimierung des Beladungsschemas der Brennelemente eines Forschungsreaktors. Der vorgeschlagene genetische Algorithmus arbeitet mit zwei Arten genetischer Operatoren: einem auf der Grundlage binärer Chromosomen und einem anderen auf der Grundlage ganzzahliger Chromosomen. Der Algorithmus sucht automatisch nach den am besten geeigneten Wichtungsfunktionen und dem optimalen Beladungsschema für die Brennelemente. Illustrative Berechnungen werden durchgeführt für einen Forschungsreaktor vom Typ TRIGA MARK II beladen mit russischen VVR-M2 Brennelementen. Die Ergebnisse zeigen, dass der vorgeschlagene genetische Algorithmus erfolgreich die besten Wichtungsfaktoren und eine Reihe optimaler Beladungsschemata sucht, wodurch der effektive Multiplikationsfaktor maximiert und der Leistungsspitzenfaktor minimiert wird, unter Einhaltung betrieblicher Beschränkungen und Sicherheitsauflagen des Forschungsreaktors.

References

1 Turinsky, P. J.: Nuclear fuel management optimization: a work in progress. Nuclear Technology151 (2005) 310.13182/NT05-A3626Suche in Google Scholar

2 Bell, G. I.; Glasstone, S.: Nuclear reactor theory. Van Nostrand Reinhold Company, New York (1970)Suche in Google Scholar

3 IAEA Directory of nuclear reactors. Vol. IV (1962)Suche in Google Scholar

4 Kropaczek, D. J.; Turinsky, P. J.: In-core nuclear fuel management for pressurized water reactors utilizing simulated annealing. Nuclear Technology95 (1991) 910.13182/NT95-1-9Suche in Google Scholar

5 Stevens, J. G.; Smith, K. S.; Rempe, K. R.; Downar, T. J.: Optimization of pressurized water reactor shuffling by simulated annealing with heuristics. Nuclear Science and Engineering121 (1995) 6710.13182/NSE121-67Suche in Google Scholar

6 Lin, C.; Yang, J. L.; Lin, K. J.; Wang, Z. J.: Pressurized water reactor loading pattern design using the simple tabu search. Nuclear Science and Engineering129 (1998) 6110.13182/NSE98-A1963Suche in Google Scholar

7 De Chaine, M. D.; Feltus, M. A.: Nuclear fuel management optimization using genetic algorithms. Nuclear Technology111 (1995) 10910.13182/NT95-A35149Suche in Google Scholar

8 De Chaine, M. D.; Feltus, M. A.: Fuel management optimization using genetic algorithms and expert knowledge. Nuclear Science and Engineering124 (1996) 18810.13182/NSE96-A24234Suche in Google Scholar

9 Poon, P. W.; Parks, G. T.: Application of genetic algorithms to in-core fuel management optimization. Proceedings of the Joint Conference on Mathematical Methods and Supercomputing in Nuclear Applications, Karlsruhe, Germany, 1993, p. 777Suche in Google Scholar

10 Parks, G. T.: Multiobjective pressurized water reactor reload core design by non-dominated genetic algorithm search. Nuclear Science and Engineering124 (1996) 17810.13182/NSE96-A24233Suche in Google Scholar

11 Do, Q. B.; Choi, H.; Roh, G.: An evolutionary optimization of the refueling simulation for a CANDU reactor. IEEE Transactions on Nuclear Science53 (2006) 295710.1109/TNS.2006.882369Suche in Google Scholar

12 Do, Q. B.; Roh, G.; Choi, H.: Optimal refueling pattern search for a CANDU reactor using a genetic algorithm. Proceedings of the International Congress on Advance Power Plant 2006, Nevada, USA, 2006, p. 2422Suche in Google Scholar

13 Babazadeh, D.; Boroushaki, M.; Lucas, C.: Optimization of fuel core loading pattern design in a VVER nuclear power reactor using particle swarm optimization (PSO). Annals of Nuclear Energy36 (2009) 92310.1016/j.anucene.2009.03.007Suche in Google Scholar

14 Yadav, R. D. S.; Gupta, H. P.: Optimization studies of fuel loading pattern for a typical pressurized water reactor (PWR) using particle swarm method. Annals of Nuclear Energy38 (2011) 208610.1016/j.anucene.2011.05.019Suche in Google Scholar

15 Norouzi, A.; Aghaie, M.; Mohamadi Fard, A. R.; Zolfaghari, A.; Minuchehr, A.: Nuclear reactor core optimization with Parallel Integer Coded Genetic Algorithm. Annals of Nuclear Energy60 (2013) 30810.1016/j.anucene.2013.05.013Suche in Google Scholar

16 Aghaie, M.; Nazari, T.; Zolfaghari, A.; Minucherhr, A.; Sharani, A.: Investigation of PWR core optimization using harmony search. Annals of Nuclear Energy57 (2013) 110.1016/j.anucene.2013.01.046Suche in Google Scholar

17 Da Silva, M. H.; Schirru, R.: Optimization of nuclear reactor core fuel reload using the new quantum PBIL. Annals of Nuclear Energy38 (2011) 61010.1016/j.anucene.2010.09.010Suche in Google Scholar

18 De Oliveira, I. M. S.; Schirru, R.: Swarm intelligence of artificial bees applied to in-core fuel management optimization. Annals of Nuclear Energy38 (2011) 103910.1016/j.anucene.2011.01.009Suche in Google Scholar

19 Poursalehi, N.; Zolfaghari, A.; Minuchehr, A.: Multi-objective loading pattern enhancement of PWR based on the discrete firefly algorithm. Annals of Nuclear Energy57 (2013) 15110.1016/j.anucene.2013.01.043Suche in Google Scholar

20 Marler, R. T.; Arora, J. S.: Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization26 (2004) 36910.1007/s00158-003-0368-6Suche in Google Scholar

21 Goldberg, D.F.: Genetic algorithms in search optimization and machine learning. Addison Wesley, Reading, Massachusetts (1989)Suche in Google Scholar

22 Do, Q. B.; Nguyen, P. L.: Application of a genetic algorithm to the fuel reload optimization for a research reactor. Applied Mathematics and Computation187 (2007) 97710.1016/j.amc.2006.09.024Suche in Google Scholar

23 Fowler, T. B.; Vondy, D. R.; Kemshell, F. B.: Nuclear reactor core analysis code: CITATION. EORNL-TM-2496, RSICC (1971)Suche in Google Scholar

24 AEA Technology: WIMSD – A neutronics code for standard lattice physics analysis. ANSWERS Software Service (1997)Suche in Google Scholar

Received: 2014-04-01
Published Online: 2014-12-18
Published in Print: 2014-12-18

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110447/html?lang=de
Button zum nach oben scrollen