Startseite Technik Recursive solutions for multi-group neutron kinetics diffusion equations in homogeneous three-dimensional rectangular domains with time dependent perturbations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Recursive solutions for multi-group neutron kinetics diffusion equations in homogeneous three-dimensional rectangular domains with time dependent perturbations

  • C. Z. Petersen , B. E. J. Bodmann , M. T. Vilhena und R. C. Barros
Veröffentlicht/Copyright: 18. Dezember 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the present work we solve in analytical representation the three dimensional neutron kinetic diffusion problem in rectangular Cartesian geometry for homogeneous and bounded domains for any number of energy groups and precursor concentrations. The solution in analytical representation is constructed using a hierarchical procedure, i. e. the original problem is reduced to a problem previously solved by the authors making use of a combination of the spectral method and a recursive decomposition approach. Time dependent absorption cross sections of the thermal energy group are considered with step, ramp and Chebyshev polynomial variations. For these three cases, we present numerical results and discuss convergence properties and compare our results to those available in the literature.

Kurzfassung

In der vorliegenden Arbeit lösen wir in analytischer Darstellung das dreidimensionale kinetische Neutronendiffusionsproblem in rechtwinkliger kartesischer Geometrie für homogene und begrenzte Gebiete für eine beliebige Anzahl von Energiegruppen und Neutronenvorläuferkonzentrationen. Die Lösung in analytischer Darstellung wird unter Verwendung eines hierarchischen Verfahrens konstruiert, d. h. das ursprüngliche Problem wird zu einem Problem reduziert, welches zuvor von den Autoren unter Verwendung einer Kombination der spektralen Methode und einer rekursiven Zerlegung gelöst wurde. Zeitabhängige Absorptionswirkungsquerschnitte der thermischen Energiegruppe werden mit Sprung-, Rampen-und Tschebyscheff-Polynom Variationen betrachtet. Für diese drei Fälle stellen wir numerische Ergebnisse vor, diskutieren Konvergenzeigenschaften und vergleichen unsere Ergebnisse mit denen in der Literatur.

References

1 Sekimoto, H.: Nuclear Reactor Theory. COE-INES, Tokyo, Part II, 2008Suche in Google Scholar

2 Lamarsh, J. R.: Introduction to Nuclear Reactor Theory. Wesley publishing company, New York, 1966Suche in Google Scholar

3 Duderstadt, J. J.; HamiltonL.J.: Nuclear Reactor Analysis. John Wiley and Sons, New York, NY, 1998Suche in Google Scholar

4 Hetrick, D. L.: Dynamics of Nuclear Reactors. University of Chicago press, Chicago and London, 1971Suche in Google Scholar

5 Aboanber, A. E.; Hamada, Y. M.: Generalized Runge-Kutta Method for Two- and Three-Dimensional Space-Time Diffusion Equations with A Variable Time Step. Annals of Nuclear Energy35 (2008) 1024104010.1016/j.anucene.2007.10.008Suche in Google Scholar

6 Oliveira, F. L.; Maiorino, J. R.; Santos, R. S.: The analytical benchmark solution of spatial diffusion kinetics in source driven systems for homogeneous media. International Nuclear Atlantic Conference – INAC, Rio de Janeiro, Brazil, 2007Suche in Google Scholar

7 Segatto, C. F.; Vilhena, M. T.; Marona, D. V.: The LTSn solution of the transport equation for one-dimensional Cartesian geometry with c=1. Kerntechnik73 (2008) 576010.3139/124.100539Suche in Google Scholar

8 Dulla, S.; Ravetto, P.; Rostagno, M. M.; Bianchini, G.; Carta, M.; D'Angelo, A.: Some features of spatial neutron kinetics for multiplying systems. Nuclear Science and Engineering149 (2005) 8810010.13182/NSE149-88Suche in Google Scholar

9 Corno, S. E.; Dulla, S.; Picca, P.; Ravetto, P.: Analytical approach to the neutron kinetics of the non-homogeneous reactor. Progress in Nuclear Energy50 (2008) 84786510.1016/j.pnucene.2008.02.001Suche in Google Scholar

10 Dulla, S.; Ravetto, P.; Picca, P.; Tomatis, D.: Analytical benchmarks for the kinetics of accelerator-driven systems. Intern. Topic. Meet. Mathem. & Computation and Supercomputing in Nuclear Applications, Monterey, CA, 2007Suche in Google Scholar

11 Petersen, C. Z.; Vilhena, M. T.; Dulla, S.; Ravetto, P.: An analytical solution of the point kinetics equations with time variable reactivity by the decomposition method. Progress in Nuclear Energy53 (2011) 1091109410.1016/j.pnucene.2011.01.001Suche in Google Scholar

12 Bodmann, B. E. J.; de Vilhena, M. T.; Ferreira, L. S.; Bardaji, J. B.: An analytical solver for the multi-group two-dimensional neutron-diffusion equation by integral transform techniques. Il Nuovo Cimento33 C (1) (2010) 6370Suche in Google Scholar

13 Schramm, M.; Petersen, C. Z.; Bodmann, B. E. J.; Vilhena, M. T.: On the robustness of the GITT solution for the 2-D neutron diffusion equation in Cartesian geometry. Integral Methods In Science and Engineering, Birkhäuser, Boston, 2010Suche in Google Scholar

14 Petersen, C. Z.; Vilhena, M. T.; Bodmann, B. E.; Dulla, S.; Ravetto, P.: On the exact solution for the multi-group kinetic neutron diffusion equation in a rectangle. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering”, MC2011, 2011Suche in Google Scholar

15 Cotta, R. M.: The integral transforms in computational heat and fluid flow. CRC Press, Boca Raton, FL, 1993Suche in Google Scholar

16 Cotta, R. M.; Adomian, G.: The Integral Transform Method in Thermal and Fluids Science and Engineering. Begell House, New York, NY, 1998Suche in Google Scholar

17 Adomian, G.: Solving frontier problems of physics: the decomposition method. Kluwer Academic Publishers, Boston, MA, 199410.1007/978-94-015-8289-6Suche in Google Scholar

18 Goodman, J.W.: Introduction To Fourier Optics. McGraw Hill, New York, NY, 1996Suche in Google Scholar

19 Ceolin, C.; Vilhena, M. T.; Bodmann, B. E. J.: On The analytical solution of the multi-group neutron diffusion kinetics equation in one-dimensional cartesian geometry by the integral transform technique. Integral Methods in Science and Engineering, Birkhäuser, Boston, 201010.1007/978-0-8176-8238-5_7Suche in Google Scholar

20 Unser, M.: Sampling-50 Years after Shannon. Proc. IEEE, 88 (4) (2000) 56958710.1109/5.843002Suche in Google Scholar

21 Ferguson, D. R.; Hansen, K. F.: Solution of the Space-Dependent Reactor Kinetics Equations in Three Dimensions. Nuclear Science and Engineering51 (1973) 18920510.13182/NSE73-A26594Suche in Google Scholar

Received: 2014-04-25
Published Online: 2014-12-18
Published in Print: 2014-12-18

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110434/html
Button zum nach oben scrollen