Use of erbium as burnable poison for VVER reactors
-
A. Pavlovichev
, E. Kosourov , A. Shcherenko , V. Saprykin , A. Lazarenko , S. Aleshin and A. Shcherenko
Abstract
Problems related to use of Erbium as burnable poison for VVER are discussed. Comparison is made between neutronics characteristics of Uranium-Gadolinium and Uranium-Erbium fuel cycles. The study shows that use of Erbium as burnable poison allows decreasing the peaking factor in the core. Meanwhile residual Erbium at the end of the fuel cycle makes it necessary to increase fuel enrichment. There is made the conclusion of prospects of using Erbium as burnable poison for VVER.
Kurzfassung
Vor- und Nachteile des Einsatzes von Erbium als Reaktorgift in WWER Reaktoren werden vorgestellt. Dazu werden die Neutronenparameter der Brennstoffzyklen beim Einsatz von Uran-Gadolinium und von Uran-Erbium verglichen. Die Untersuchung zeigt, dass der Einsatz von Erbium als Reaktorgift eine Absenkung des Peakfaktors der Leistungsverteilung im Kern erlaubt. Gleichzeitig erfordert der Restwert des Erbiums am Ende eines Brennstoffzyklus eine höhere Anreicherung des Brennstoffs. Als Fazit werden die positiven Erwartungen an die Nutzung von Erbium zusammengefasst.
References
1 Kosourov, E.; Pavlov, V.; Pavlovichev, A.: Fuel Cycle of VVER-1000: technical and economic aspects. – In: Proc. of the 8-th International Conference WWER Fuel. Performance, Modelling and Experimental Support, Burgas, Bulgaria, Sept. 26 – Oct.4, 2009, p. 120–127Search in Google Scholar
2 Kosourov, E.; Pavlovichev, A.; Shcherenko, A.: Fuel Cycles of WWER-1000 Based on Assemblies with Increased Fuel Mass. – In: Proc. of the 9-th International Conference WWER Fuel. Performance, Modelling and Experimental Support, Burgas, Bulgaria, Sept. 17–24, 2011, p. 150–158Search in Google Scholar
3 Optimum Cycle Length and Discharge Burnup for Nuclear Fuel: Phase II: Results Achievable with Enrichments Greater than 5.0 w/o. EPRI, Palo Alto, CA and U.S. Department of Energy, Washington, DC: 2002. 1003217Search in Google Scholar
4 Renier, J.-P. A.; Grossbeck, M. L.: Development of improved burnable poisons for commercial nuclear power reactors. ORNL/TM-2001/238, Oak Ridge National Laboratory, 200110.2172/814398Search in Google Scholar
5 Bystrikov, A. A.; Egorov, A. K.; Ivanov, V. I.; Burlakov, E. V.; Krayushkin, A. V.; Fedosov, A. M. et al.: Experience in use of uranium-erbium fuel in power units with RBMK reactors. Atomnaya Energiya.100 (2006) 165–170Search in Google Scholar
6 Novikov, A. N.: Development of VVER physical calculation codes. – In: Proc. of the tenth Symp. of AER. Moscow, Russia, Oct. 18–22, 2000, v. 1, p. 433–448Search in Google Scholar
7 Aleshin, S. S.; Bolobov, P. A.; Bolshagin, S. N. et al.: Verification of third generation code package for VVER. – Ibid., p. 169–227Search in Google Scholar
8 Alekseev, N. I.; Gomin, E. A.; Gorodkov, S. S. et al.: Development of MCU-PD2006 code for calculation of neutron physics characteristics for NPP-2006 VVER-1200 reactor cores with use of Monte Carlo method for solving neutron transfer equations on the basis of information from estimated nuclear data files. INR RRC KI report. Inv. No. 36-03/18-08, M., 2008Search in Google Scholar
9 ENDF-102. “Data Formats and Procedures for the Evaluated Nuclear Data Files ENDF7”, July 1990, National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York, 11973Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Selected contributions to the XXIInd symposium of the Atomic Energy Research organization
- Technical Contributions/Fachbeiträge
- Fuel cycles of WWER-440: results of basic design modification
- Use of erbium as burnable poison for VVER reactors
- The estimation of the control rods absorber burn-up during the VVER-1000 operation
- The main characteristic of the evolution project SuperVVER with spectrum shift regulation
- Automatic loading pattern optimization tool for Loviisa VVER-440 reactors
- Uncertainties of the neutronic calculations at core level determined by the KARATE code system and the KIKO3D code
- The reactor dynamics code DYN3D and its trigonal-geometry nodal diffusion model
- Comparison of sensitivity and uncertainty in Gd and Er containing fuels for VVER-1000 using TSUNAMI-2D
- Contribution of the number of measured data to calculation uncertainty in the worth of VVER control rods
- A comparison of the FA's models with the detailed and simplified description in the MCU code calculations
- Account for uncertainties of control measurements in the assessment of design margin factors
- Results of precision calculations of three-dimensional power density in VVER-1000 core with feedbacks using MCU code
- CFD analysis of temperature deviations in Gd assembly heads
- Application of statistical uncertainty and sensitivity evaluations to a PWR LBLOCA analysis calculated with the code ATHLET. Part 1: uncertainty analysis
- Post test calculations of a severe accident experiment for VVER-440 reactors by the ATHLET code
- The impact on the competence on severe accidents following the Fukushima event
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Editorial
- Selected contributions to the XXIInd symposium of the Atomic Energy Research organization
- Technical Contributions/Fachbeiträge
- Fuel cycles of WWER-440: results of basic design modification
- Use of erbium as burnable poison for VVER reactors
- The estimation of the control rods absorber burn-up during the VVER-1000 operation
- The main characteristic of the evolution project SuperVVER with spectrum shift regulation
- Automatic loading pattern optimization tool for Loviisa VVER-440 reactors
- Uncertainties of the neutronic calculations at core level determined by the KARATE code system and the KIKO3D code
- The reactor dynamics code DYN3D and its trigonal-geometry nodal diffusion model
- Comparison of sensitivity and uncertainty in Gd and Er containing fuels for VVER-1000 using TSUNAMI-2D
- Contribution of the number of measured data to calculation uncertainty in the worth of VVER control rods
- A comparison of the FA's models with the detailed and simplified description in the MCU code calculations
- Account for uncertainties of control measurements in the assessment of design margin factors
- Results of precision calculations of three-dimensional power density in VVER-1000 core with feedbacks using MCU code
- CFD analysis of temperature deviations in Gd assembly heads
- Application of statistical uncertainty and sensitivity evaluations to a PWR LBLOCA analysis calculated with the code ATHLET. Part 1: uncertainty analysis
- Post test calculations of a severe accident experiment for VVER-440 reactors by the ATHLET code
- The impact on the competence on severe accidents following the Fukushima event