A numerical method for resonance integral calculations
-
T. Tanbay
Abstract
A numerical method has been proposed for resonance integral calculations and a cubic fit based on least squares approximation to compute the optimum Bell factor is given. The numerical method is based on the discretization of the neutron slowing down equation. The scattering integral is approximated by taking into account the location of the upper limit in energy domain. The accuracy of the method has been tested by performing computations of resonance integrals for uranium dioxide isolated rods and comparing the results with empirical values.
Kurzfassung
Eine numerische Methode zur Berechnung von Resonanzintegralen und eine kubische Anpassung auf der Basis der Methode der kleinsten Quadrate wird vorgeschlagen, um den optimalen Bell-Faktor zu berechnen. Die numerische Methode basiert auf der Diskretisierung der Neutronen-Abbremsgleichungen. Das Streuintegral wird angenähert durch Berücksichtigung des Ortes der oberen Grenze des Energiebereichs. Die Genauigkeit der Methode wurde überprüft mit Hilfe der Berechnung von Resonanzintegralen für einzelne Urandioxid-Brennstäbe und dem Vergleich der Ergebnisse mit empirischen Werten.
References
1 Cacuci, D. G. (Ed.): Handbook of Nuclear Engineering, Springer, New York, 201010.1007/978-0-387-98149-9Search in Google Scholar
2 Sugimura, N.; Yamamoto, A.: Resonance Treatment Based on Ultra-Fine-Group Spectrum Calculation in the AEGIS code. Journal of Nuclear Science and Technology44 (2007) 958Search in Google Scholar
3 Chao, Y. A.; YarbroughM.B.; Martinez, A. S.: Approximations to Neutron Escape Probability and Dancoff Corrections. Nuclear Science and Engineering78 (1981) 89Search in Google Scholar
4 Bell, G. I.; Glasstone, S.: Nuclear Reactor Theory, Van Nostrand Reinhold, New York, 1970Search in Google Scholar
5 Weinberg, A. M.; Wigner, E. P.: The Physical Theory of Neutron Chain Reactors, University of Chicago Press, Chicago, 1958Search in Google Scholar
6 Levine, M.: Resonance Integral Calculations for 238U Lattices, Nuclear Science and Engineering18 (1963) 271Search in Google Scholar
7 Carlvik, I.: Collision Probabilities for Finite Cylinders and Cuboids. AB Atomenergi, Stockholm, 196710.13182/NSE30-01-150TNSearch in Google Scholar
8 Stammler, R. J. J.; Abbate, M. J.: Methods of Steady State Reactor Physics in Nuclear Design, Academic Press, London, New York, 1983Search in Google Scholar
9 Corngold, N. R.: On the collision probability for the infinite cylinder, Annals of Nuclear Energy29 (2002) 1151Search in Google Scholar
10 Herman, M.; Trkov, A. (ed.): ENDF-6 Formats Manual, BNL, New York, 2010Search in Google Scholar
11 Gonçalves, A. C.; Martinez, A. S.; Silva, F. C.: Solution of the Doppler Broadening Function Based on the Fourier Cosine Transform, Annals of Nuclear Energy35 (2008) 1878Search in Google Scholar
12 Dresner, L.: Resonance Absorption in Nuclear Reactors, Pergamon Press, Elmsford, 1960Search in Google Scholar
13 Lewis, E. E.: Fundamentals of Nuclear Reactor Physics, Academic Press, USA, 200810.1016/B978-0-12-370631-7.00001-2Search in Google Scholar
14 Fukai, Y.: Resonance integral and its temperature coefficient for finite 238UO2 rod, Journal of Nuclear Science and Technology9 (1972) 406Search in Google Scholar
15 Fink, J. K.: Thermophysical properties of uranium dioxide, Journal of Nuclear Materials, Vol. 27 (2000) 1Search in Google Scholar
© 2013, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Chemistry aspects of the source term formation for a severe accident in a CANDU type reactor
- Analytical study on degraded core quenching
- Experimental investigations on control of flow instability in single-phase natural circulation loop
- Burnup calculations using serpent code in accelerator driven thorium reactors
- Investigation of neutronic effects in structural material of a hybrid reactor by using the MCNPX Monte Carlo transport code
- Nuclear aspects and cyclotron production of the positron emitter 55Co
- Calculation of age-dependent effective doses for external exposure using the MCNP code
- Effect of Cu2+/Al3+ mole ratio on structure of Cu – Al bimetallic nanoparticles prepared by radiation induced method
- A numerical method for resonance integral calculations
- Computational modeling of monoenergetic neutral particle inverse transport problems in slab geometry
- Effects on criticality of selected scattering phase functions in neutron transport equation using the Chebyshev approximation
- U1 and P1 approximations to neutron transport equation for diffusion length calculation
- Technical Notes/Technische Mitteilungen
- TN approximation for the critical size of one-speed neutrons in a slab with anisotropic scattering
- Albedo and constant source problems for extremely anisotropic scattering
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Chemistry aspects of the source term formation for a severe accident in a CANDU type reactor
- Analytical study on degraded core quenching
- Experimental investigations on control of flow instability in single-phase natural circulation loop
- Burnup calculations using serpent code in accelerator driven thorium reactors
- Investigation of neutronic effects in structural material of a hybrid reactor by using the MCNPX Monte Carlo transport code
- Nuclear aspects and cyclotron production of the positron emitter 55Co
- Calculation of age-dependent effective doses for external exposure using the MCNP code
- Effect of Cu2+/Al3+ mole ratio on structure of Cu – Al bimetallic nanoparticles prepared by radiation induced method
- A numerical method for resonance integral calculations
- Computational modeling of monoenergetic neutral particle inverse transport problems in slab geometry
- Effects on criticality of selected scattering phase functions in neutron transport equation using the Chebyshev approximation
- U1 and P1 approximations to neutron transport equation for diffusion length calculation
- Technical Notes/Technische Mitteilungen
- TN approximation for the critical size of one-speed neutrons in a slab with anisotropic scattering
- Albedo and constant source problems for extremely anisotropic scattering