Home A numerical method for resonance integral calculations
Article
Licensed
Unlicensed Requires Authentication

A numerical method for resonance integral calculations

  • T. Tanbay and B. Ozgener
Published/Copyright: September 9, 2013
Become an author with De Gruyter Brill

Abstract

A numerical method has been proposed for resonance integral calculations and a cubic fit based on least squares approximation to compute the optimum Bell factor is given. The numerical method is based on the discretization of the neutron slowing down equation. The scattering integral is approximated by taking into account the location of the upper limit in energy domain. The accuracy of the method has been tested by performing computations of resonance integrals for uranium dioxide isolated rods and comparing the results with empirical values.

Kurzfassung

Eine numerische Methode zur Berechnung von Resonanzintegralen und eine kubische Anpassung auf der Basis der Methode der kleinsten Quadrate wird vorgeschlagen, um den optimalen Bell-Faktor zu berechnen. Die numerische Methode basiert auf der Diskretisierung der Neutronen-Abbremsgleichungen. Das Streuintegral wird angenähert durch Berücksichtigung des Ortes der oberen Grenze des Energiebereichs. Die Genauigkeit der Methode wurde überprüft mit Hilfe der Berechnung von Resonanzintegralen für einzelne Urandioxid-Brennstäbe und dem Vergleich der Ergebnisse mit empirischen Werten.

References

1 Cacuci, D. G. (Ed.): Handbook of Nuclear Engineering, Springer, New York, 201010.1007/978-0-387-98149-9Search in Google Scholar

2 Sugimura, N.; Yamamoto, A.: Resonance Treatment Based on Ultra-Fine-Group Spectrum Calculation in the AEGIS code. Journal of Nuclear Science and Technology44 (2007) 958Search in Google Scholar

3 Chao, Y. A.; YarbroughM.B.; Martinez, A. S.: Approximations to Neutron Escape Probability and Dancoff Corrections. Nuclear Science and Engineering78 (1981) 89Search in Google Scholar

4 Bell, G. I.; Glasstone, S.: Nuclear Reactor Theory, Van Nostrand Reinhold, New York, 1970Search in Google Scholar

5 Weinberg, A. M.; Wigner, E. P.: The Physical Theory of Neutron Chain Reactors, University of Chicago Press, Chicago, 1958Search in Google Scholar

6 Levine, M.: Resonance Integral Calculations for 238U Lattices, Nuclear Science and Engineering18 (1963) 271Search in Google Scholar

7 Carlvik, I.: Collision Probabilities for Finite Cylinders and Cuboids. AB Atomenergi, Stockholm, 196710.13182/NSE30-01-150TNSearch in Google Scholar

8 Stammler, R. J. J.; Abbate, M. J.: Methods of Steady State Reactor Physics in Nuclear Design, Academic Press, London, New York, 1983Search in Google Scholar

9 Corngold, N. R.: On the collision probability for the infinite cylinder, Annals of Nuclear Energy29 (2002) 1151Search in Google Scholar

10 Herman, M.; Trkov, A. (ed.): ENDF-6 Formats Manual, BNL, New York, 2010Search in Google Scholar

11 Gonçalves, A. C.; Martinez, A. S.; Silva, F. C.: Solution of the Doppler Broadening Function Based on the Fourier Cosine Transform, Annals of Nuclear Energy35 (2008) 1878Search in Google Scholar

12 Dresner, L.: Resonance Absorption in Nuclear Reactors, Pergamon Press, Elmsford, 1960Search in Google Scholar

13 Lewis, E. E.: Fundamentals of Nuclear Reactor Physics, Academic Press, USA, 200810.1016/B978-0-12-370631-7.00001-2Search in Google Scholar

14 Fukai, Y.: Resonance integral and its temperature coefficient for finite 238UO2 rod, Journal of Nuclear Science and Technology9 (1972) 406Search in Google Scholar

15 Fink, J. K.: Thermophysical properties of uranium dioxide, Journal of Nuclear Materials, Vol. 27 (2000) 1Search in Google Scholar

Received: 2012-8-16
Published Online: 2013-09-09
Published in Print: 2013-06-28

© 2013, Carl Hanser Verlag, München

Downloaded on 12.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110292/html?srsltid=AfmBOoq6XmwA-qxS7IDQ0zp4chGgKmdjH-Op29b1sJb2T-tOa2rlC8su
Scroll to top button