Startseite Technik Calculation of beta induced Bremsstrahlung exposure from therapeutic radionuclide 198Au in tissues, DNA and RNA
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Calculation of beta induced Bremsstrahlung exposure from therapeutic radionuclide 198Au in tissues, DNA and RNA

  • H. Jabal-Ameli , S. Sadjadi , S. J. Ahmadi , M. Sadeghi und M. K. Bakht
Veröffentlicht/Copyright: 18. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Gold-198 (βmax=0.96MeV (98.6%), γmax=0.412MeV (95.5%) and T1/2=2.7 days) is a well-known therapeutic beta emitter in the field of nuclear medicine, and is being used for the treatment of many different cancers. In the present study, the Bremsstrahlung exposure induced by 198Au in different human tissues, DNA and RNA has been calculated. The specific Bremsstrahlung constant (ΓBr), Probability of energy loss by beta during Bremsstrahlung emission (PBr) and Bremsstrahlung activity (Arelease)Br were estimated. We strongly recommend these parameters should be considered in absorbed dose calculations of radionuclide therapy via 198Au.

Kurzfassung

Gold-198 (βmax=0.96 MeV (98.6%), γmax=0.412 MeV (95.5%) and T1/2=2.7 Tage) ist ein bekannter therapeutischer Beta-Emitter in der Nuklearmedizin und wird zur Behandlung verschiedener Krebserkrankungen verwendet. In der vorliegenden Studie wurde die Exposition von verschiedenen menschlichen Geweben, DNA und RNA durch 198Au Bremsstrahlung berechnet. Die spezifische Bremsstrahlungskonstante (ΓBr), die Wahrscheinlichkeit des Energieverlustes durch Betastrahlung während der Emission von Bremsstrahlung (PBr) und die Bremsstrahlungsaktivität (Arelease)Br wurden bestimmt. Es wird dringend empfohlen diese Parameter bei der Berechnung der Energiedosis in der Radionuklidtherapie mit 198Au zu berücksichtigen.

References

1 Bakht, M. K.;Sadeghi, M.;Tenreiro, C.: A novel technique for simultaneous diagnosis and radioprotection by radioactive cerium oxide nanoparticles: study of cyclotron production of 137mCe. J. Radioanalytical Nucl. Chem. (In press) doi:10.1007/s10967-011-1483-210.1007/s10967-011-1483-2Suche in Google Scholar

2 Sadeghi, M.;Bakht, M. K.;Mokhtari, L.: Practicality of the cyclotron production of radiolanthanide142Pr: a potential for therapeutic applications and biodistribution studies. J. Radioanalytical Nucl. Chem.288 (2011) 93710.1007/s10967-011-1033-ySuche in Google Scholar

3 Bakht, M. K.;Sadeghi, M.: Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy. Ann. Nucl. Med.25 (2011) 52910.1007/s12149-011-0505-zSuche in Google Scholar

4 Spillane, T.;Raiola, F.;Zeng, F.: The 198Au half-life in the metal Au. Eur Phys J A31 (2007) 20310.1140/epja/i2006-10212-8Suche in Google Scholar

5 Abzouzi, A.;Antony, M. S.;Hachem, A.;Ndocko-Ndongue, V. B.: Precision measurements of the half-life of 60mCo, 79mSe, 104mRh, 149Nd, 176mLu, 177Lu and 198Au. Radioanalytical Nucl. Chem.144 (1990) 35910.1007/BF02218143Suche in Google Scholar

6 Gonzales, E. R.;Garcia, S. R.;Mahan, C.;Hang, W.: Evaluation of mass spectrometry and radiation detection for the analysis of radionuclides. J. Radioanalytical Nucl. Chem.263 (2005) 457Suche in Google Scholar

7 IAEA-TECDOC-1340. Manual for reactor produced radioisotopes. IAEA, Vienna, 2003 ISBN: 92-0-101103-2, ISSN 1011-4289 (2003)Suche in Google Scholar

8 Jiang, J.;Liu, C.;Zhou, W.;Gao, H.: The extraction of low-concentrations of gold (I) with 198Au as a radiotracer. J. Radioanalytical Nucl. Chem.254 (2002) 40510.1023/A:1021617109540Suche in Google Scholar

9 Myers, W.: Colmery B. Radioactive Au-198 in gold seeds for cancer therapy. Cancer Res12 (1952) 285Suche in Google Scholar

10 Sadeghi, M.;Jabal-Ameli, H.;Ahmadi, S. J.;Sadjadi, S. S.;Bakht, M. K.: Production of cationic 198Au3+ and nonionic 198Au0 for radionuclide therapy applications via the natAu(n,γ) 198Au reaction. J Radioanalytical Nucl Chem293 (2012) 4510.1007/s10967-012-1772-4Suche in Google Scholar

11 Cohen, J.;Sklaroff, D.: Intraperitoneal radioactive gold in ovarian cancer. Obstet Gynecol6 (1955) 68Suche in Google Scholar

12 Wheeler, H.;Jaques, W.;Botsford, T.: Experiences with the use of radioactive colloidal gold in the treatment of cancer. Ann Surg141 (1955) 20810.1097/00000658-195502000-00006Suche in Google Scholar

13 Bakht, M. K.;Sadeghi, M.;Pourbaghi-Masouleh, M.;Tenreiro, C.: Scope of nanotechnology-based radiation therapy and thermotherapy methods in cancer treatment. Curr Cancer Drug Targets12 (2012) 99810.2174/156800912803251216Suche in Google Scholar

14 Karvat, A.;Duzenli, C.;Paton, K.;Pickles, T.: The treatment of choroidal melanoma with 198Au plaque brachytherapy. Radiother Oncol59 (2001) 15310.1016/S0167-8140(00)00334-0Suche in Google Scholar

15 Katti, K. V.;Katti, K. R.;Kattumori, V.;Pandrapraganda, R.;Rahing, V.;Cutler, C. et al.: Hybrid gold nanoparticles in molecular imaging and radiotherapy. Czech J Phys.56 (2006) 23Suche in Google Scholar

16 Khan, M.:Minc, L.:Nigavekar, S.;Kariapper, M.:Nair, B.;Schipper, M. et al.: Fabrication of {198Au0} radioactive composite nanodevices and their use for nanobrachytherapy. Nanomed: Nanotechnol Biol Med. 4 (2008) 5710.1016/j.nano.2007.11.005Suche in Google Scholar PubMed PubMed Central

17 Patra, C. R.;Bhattacharya, R.;Mukhopadhyay, D.;Mukherjee, P.: Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Delivery Rev62 (2010) 34610.1016/j.addr.2009.11.007Suche in Google Scholar PubMed PubMed Central

18 Chanda, N.;Kan, P.;Watkinson, L.;Shukla, R.;Zambre, A.;Carmack, T. et al.: Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomed: Nanotechnol Biol Med6 (2010) 20110.1016/j.nano.2009.11.001Suche in Google Scholar PubMed

19 Manjunatha, H. C.;Rudraswamy, B.: Exposure of bremsstrahlung from beta-emitting therapeutic radionuclides. Radiat Meas44 (2009) 20610.1016/j.radmeas.2009.01.001Suche in Google Scholar

20 Turner, J. in: Atoms, Radiation, and Radiation Protection, Pergamon Press, New York, 1986, pp. 90Suche in Google Scholar

21 Manjunatha, H. C.;Rudraswamy, B.: Bremsstrahlung exposure of tissues from beta-therapeutic nuclides. Nucl Instrum Meth A621 (2010) 58110.1016/j.nima.2010.05.021Suche in Google Scholar

22 Manjunatha, H. C.;Rudraswamy, B.: Beta induced Bremsstrahlung exposure in DNA and RNA. Phys Med27 (2011) 18810.1016/j.ejmp.2010.12.002Suche in Google Scholar PubMed

23 Markowicz, A. A.;VanGriken, R. E.: Composition dependence of Bremsstrahlung background in electron-probe X-ray microanalysis. Anal Chem1984; 56: 2049e55.10.1021/ac00276a016Suche in Google Scholar

24 Shivaramu: Modified Kramer's law for Bremsstrahlung produced by complete beta particle absorption in thick targets and compounds. J Appl Phys68 (1990) 122510.1063/1.346721Suche in Google Scholar

25 Zanzonico, P.B.;Binkert, B. L.;Goldsmith, S. J.: Bremsstrahlung exposure from pure -ray emitters. J Nucl Med40 (1999) 1024Suche in Google Scholar

26 Johns, H. E.;Cunningham, J. R.: The physics of radiology. 3rd ed.Spingfield, IL: Charles C, Thomas; 1969, p. 164Suche in Google Scholar

27 Zanzonico, P. B.;Brill, A. B.;Becker, D.V.: Radiation dosimetry. In:Wagner, H. N.;Szabo, Z.;Buchanan, J. W. (editors) Principle of nuclear medicine. 2nd ed.Philadelphia, PA: WB saunders; 1995, p. 10634Suche in Google Scholar

28 Christy, M.;Eckerman, K. F.: Specific absorbed fractions of energy at various ages from internal photon sources, vol. IeVII. Oak ridge: Oak ridge national laboratory; 1987, ORNL/TM838110.2172/6233735Suche in Google Scholar

Received: 2011-12-21
Published Online: 2013-05-18
Published in Print: 2012-11-01

© 2012, Carl Hanser Verlag, München

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110219/pdf
Button zum nach oben scrollen