Home Technology Simulation of HALDEN IFA-650 loss-of-coolant accidents tests with TRACE
Article
Licensed
Unlicensed Requires Authentication

Simulation of HALDEN IFA-650 loss-of-coolant accidents tests with TRACE

  • Y. Aounallah
Published/Copyright: May 18, 2013
Become an author with De Gruyter Brill

Abstract

The trends towards higher burnups, longer in-core fuel residence time, and the development of new cladding materials, have led to the need to re-assess the safety criteria for loss-of-coolant accidents. The HALDEN IFA-650 series of experiments are integral, single-pin, in-pile tests on the fuel behavior undergoing conditions of a loss-of-coolant accident over pre-determined fuel rod linear heat rate, and under thermally-controlled structural environment. Fresh and irradiated fuel pins from commercial reactors were tested. The present work seeks to assess the capability of a new (best-estimate) thermal-hydraulics code TRACE (version 5.0), to adequately predict the thermal-hydraulic impact of a loss-of-coolant accident on fuel rods. Several tests have been simulated over a range of fuel rod power and surrounding structure temperatures. The tests initiated from conditions of single-phase liquid natural circulation operating at 7MPa with subsequent venting to near-atmospheric pressure.

Kurzfassung

Der Trend hin zu höheren Abbränden und längeren Verweilzeiten des Brennstoffes im Kern und die neuen Hüllrohrmaterialien machen eine Neubewertung der Sicherheitskriterien von Kühlmittelverluststörfällen notwendig. Die HALDEN IFA-650 Experimente sind eine Reihe integraler Tests mit einzelnen Brennstäben, in-pile Tests mit dem Ziel der Untersuchung des Brennstoffverhaltens während eines Kühlmittelverluststörfalls stattfinden. Dabei wird der Brennstoff unter thermisch kontrollierten Bedingungen und in einer bekannten, wohl definierten Umgebung thermisch linear aufgeheizt. Frische und bestrahlte Brennstäbe aus kommerziellen Reaktoren wurden getestet. Die vorliegende Arbeit untersucht den neuen realistischen (best-estimate) Thermo-Hydraulik Code TRACE (Version5.0) auf seine Fähigkeit, die thermo-hydraulischen Auswirkungen eines Kühlmittelverluststörfalls auf die Brennstäbe mit angemessener Genauigkeit vorherzusagen. Mehrere Halden Experimente mit verschiedener Leistung und Umgebungstemperatur des Brennstoffs wurden simuliert. Naturkonvektion in flüssigem Wasser bei 7MPa war jeweils der Anfangszustand, und der Druck wurde anschliessend jeweils auf Atmosphärendruck reduziert.

References

1 Nuclear Energy Agency (NEA/CSNI): Benchmark calculations on Halden IFA-650 LOCA test results. NEA/CSNI/R(2010)6, November 2010Search in Google Scholar

2 Office of Nuclear Regulatory Research: TRACE V5.0 Theory Manual – Field Equations, Solution Methods, and Physical Methods. U.S. Nuclear Regulatory Commission, Washington DC, 2007Search in Google Scholar

3 Kekkonen, L.: LOCA testing at HALDEN, the PWR experiment IFA-650.5. OECD HALDEN LOCA PROJECT, Report HWR-839, 2007Search in Google Scholar

4 Spore, J. W.: Generalized Radiation Heat Transfer Model. Los Alamos National Laboratory report, LA-UR-01-6422, November 2001Search in Google Scholar

5 Groeneveld, D. C.;Leung, L. K. H.;Kirillov, P. L.;Bobkov, V. P.;Smogalev, I. P.;Vinogradov, V. N.;Huang, X. C.;Royer, E.: The 1995 Look-up Table for Critical Heat Flux in Tubes. Nuclear Engineering and Design163 (1996) 12310.1016/0029-5493(95)01154-4Search in Google Scholar

6 Steiner, D.;Taborek, J.: Flow Boiling Heat Transfer in Vertical Tubes Correlated by an Asymptotic Model. Heat Transfer Engineering13 (2) (1992) 436910.1080/01457639208939774Search in Google Scholar

7 Gorenflo, D.: Pool Boiling. VDI-Heat Atlas, Sec. Ha, VDI-Verlag, Dusseldorf, 1993. Obtained from Collier, J. G. and Thome, J. R.: Convective Boiling and Condensation. 3rd Edition, 155 – 158, Oxford University Press, Oxford, 1994Search in Google Scholar

8 Stewart, J. C.;Groeneveld, D.C.: Low-Qality and Subcooled Film Boiling of Water at Elevated Pressures. Nuclear Engineering and Design47 (1981) 259272Search in Google Scholar

9 Gnielinski, V.: New Equations flow regime Heat and Mass Transfer in Turbulent Pipe and Channel Flow. International Chemical Engineering, 16 (1976) 359368Search in Google Scholar

10 Clare, A. J.;Fairbairn, S. A.: Droplets Dynamics and Heat Transfer in Dispersed Two-Phase Flow. Proceeding of the 1st International Workshop on Fundamental Aspects of Post-Dryout Heat Transfer, Salt Lake City, NUREG/CP-0060, 373 – 396, 1984Search in Google Scholar

11 Sun, K. H.;Gonzalez-Santalo, J. M.;Tien, C. L.: Calculations of Combined Radiation and Convection Heat Transfer in Rod Bundles Under Emergency Cooling Conditions. Journal of Heat Transfer (August 1976) 41442010.1115/1.3450569Search in Google Scholar

12 Stengård, J-O.M.;Miettinen, J.;Kelpe, S.: LOCA Test Simulation with FRAPTRAN-GENFLO (POKEVA). VTT Research Notes 2466, SAFIR 2010, Interim Report, 112, 2009Search in Google Scholar

13 Miettinen, J.;Stengård, J.-O.;Kellpe, S.: Qualification Efforts of Halden IFA-650 LOCA Test Results. Enlarged Halden Program Group (EHPG) Meeting, May 20, 2008Search in Google Scholar

Received: 2011-09-18
Published Online: 2013-05-18
Published in Print: 2012-11-01

© 2012, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110214/html
Scroll to top button