Calculation of beta induced Bremsstrahlung exposure from therapeutic radionuclide 198Au in tissues, DNA and RNA
-
H. Jabal-Ameli
, S. Sadjadi , S. J. Ahmadi , M. Sadeghi and M. K. Bakht
Abstract
Gold-198 (βmax=0.96MeV (98.6%), γmax=0.412MeV (95.5%) and T1/2=2.7 days) is a well-known therapeutic beta emitter in the field of nuclear medicine, and is being used for the treatment of many different cancers. In the present study, the Bremsstrahlung exposure induced by 198Au in different human tissues, DNA and RNA has been calculated. The specific Bremsstrahlung constant (ΓBr), Probability of energy loss by beta during Bremsstrahlung emission (PBr) and Bremsstrahlung activity (Arelease)Br were estimated. We strongly recommend these parameters should be considered in absorbed dose calculations of radionuclide therapy via 198Au.
Kurzfassung
Gold-198 (βmax=0.96 MeV (98.6%), γmax=0.412 MeV (95.5%) and T1/2=2.7 Tage) ist ein bekannter therapeutischer Beta-Emitter in der Nuklearmedizin und wird zur Behandlung verschiedener Krebserkrankungen verwendet. In der vorliegenden Studie wurde die Exposition von verschiedenen menschlichen Geweben, DNA und RNA durch 198Au Bremsstrahlung berechnet. Die spezifische Bremsstrahlungskonstante (ΓBr), die Wahrscheinlichkeit des Energieverlustes durch Betastrahlung während der Emission von Bremsstrahlung (PBr) und die Bremsstrahlungsaktivität (Arelease)Br wurden bestimmt. Es wird dringend empfohlen diese Parameter bei der Berechnung der Energiedosis in der Radionuklidtherapie mit 198Au zu berücksichtigen.
References
1 Bakht, M. K.;Sadeghi, M.;Tenreiro, C.: A novel technique for simultaneous diagnosis and radioprotection by radioactive cerium oxide nanoparticles: study of cyclotron production of 137mCe. J. Radioanalytical Nucl. Chem. (In press) doi:10.1007/s10967-011-1483-210.1007/s10967-011-1483-2Search in Google Scholar
2 Sadeghi, M.;Bakht, M. K.;Mokhtari, L.: Practicality of the cyclotron production of radiolanthanide142Pr: a potential for therapeutic applications and biodistribution studies. J. Radioanalytical Nucl. Chem.288 (2011) 93710.1007/s10967-011-1033-ySearch in Google Scholar
3 Bakht, M. K.;Sadeghi, M.: Internal radiotherapy techniques using radiolanthanide praseodymium-142: a review of production routes, brachytherapy, unsealed source therapy. Ann. Nucl. Med.25 (2011) 52910.1007/s12149-011-0505-zSearch in Google Scholar
4 Spillane, T.;Raiola, F.;Zeng, F.: The 198Au half-life in the metal Au. Eur Phys J A31 (2007) 20310.1140/epja/i2006-10212-8Search in Google Scholar
5 Abzouzi, A.;Antony, M. S.;Hachem, A.;Ndocko-Ndongue, V. B.: Precision measurements of the half-life of 60mCo, 79mSe, 104mRh, 149Nd, 176mLu, 177Lu and 198Au. Radioanalytical Nucl. Chem.144 (1990) 35910.1007/BF02218143Search in Google Scholar
6 Gonzales, E. R.;Garcia, S. R.;Mahan, C.;Hang, W.: Evaluation of mass spectrometry and radiation detection for the analysis of radionuclides. J. Radioanalytical Nucl. Chem.263 (2005) 457Search in Google Scholar
7 IAEA-TECDOC-1340. Manual for reactor produced radioisotopes. IAEA, Vienna, 2003 ISBN: 92-0-101103-2, ISSN 1011-4289 (2003)Search in Google Scholar
8 Jiang, J.;Liu, C.;Zhou, W.;Gao, H.: The extraction of low-concentrations of gold (I) with 198Au as a radiotracer. J. Radioanalytical Nucl. Chem.254 (2002) 40510.1023/A:1021617109540Search in Google Scholar
9 Myers, W.: Colmery B. Radioactive Au-198 in gold seeds for cancer therapy. Cancer Res12 (1952) 285Search in Google Scholar
10 Sadeghi, M.;Jabal-Ameli, H.;Ahmadi, S. J.;Sadjadi, S. S.;Bakht, M. K.: Production of cationic 198Au3+ and nonionic 198Au0 for radionuclide therapy applications via the natAu(n,γ) 198Au reaction. J Radioanalytical Nucl Chem293 (2012) 4510.1007/s10967-012-1772-4Search in Google Scholar
11 Cohen, J.;Sklaroff, D.: Intraperitoneal radioactive gold in ovarian cancer. Obstet Gynecol6 (1955) 68Search in Google Scholar
12 Wheeler, H.;Jaques, W.;Botsford, T.: Experiences with the use of radioactive colloidal gold in the treatment of cancer. Ann Surg141 (1955) 20810.1097/00000658-195502000-00006Search in Google Scholar
13 Bakht, M. K.;Sadeghi, M.;Pourbaghi-Masouleh, M.;Tenreiro, C.: Scope of nanotechnology-based radiation therapy and thermotherapy methods in cancer treatment. Curr Cancer Drug Targets12 (2012) 99810.2174/156800912803251216Search in Google Scholar
14 Karvat, A.;Duzenli, C.;Paton, K.;Pickles, T.: The treatment of choroidal melanoma with 198Au plaque brachytherapy. Radiother Oncol59 (2001) 15310.1016/S0167-8140(00)00334-0Search in Google Scholar
15 Katti, K. V.;Katti, K. R.;Kattumori, V.;Pandrapraganda, R.;Rahing, V.;Cutler, C. et al.: Hybrid gold nanoparticles in molecular imaging and radiotherapy. Czech J Phys.56 (2006) 23Search in Google Scholar
16 Khan, M.:Minc, L.:Nigavekar, S.;Kariapper, M.:Nair, B.;Schipper, M. et al.: Fabrication of {198Au0} radioactive composite nanodevices and their use for nanobrachytherapy. Nanomed: Nanotechnol Biol Med. 4 (2008) 5710.1016/j.nano.2007.11.005Search in Google Scholar PubMed PubMed Central
17 Patra, C. R.;Bhattacharya, R.;Mukhopadhyay, D.;Mukherjee, P.: Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Delivery Rev62 (2010) 34610.1016/j.addr.2009.11.007Search in Google Scholar PubMed PubMed Central
18 Chanda, N.;Kan, P.;Watkinson, L.;Shukla, R.;Zambre, A.;Carmack, T. et al.: Radioactive gold nanoparticles in cancer therapy: therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomed: Nanotechnol Biol Med6 (2010) 20110.1016/j.nano.2009.11.001Search in Google Scholar PubMed
19 Manjunatha, H. C.;Rudraswamy, B.: Exposure of bremsstrahlung from beta-emitting therapeutic radionuclides. Radiat Meas44 (2009) 20610.1016/j.radmeas.2009.01.001Search in Google Scholar
20 Turner, J. in: Atoms, Radiation, and Radiation Protection, Pergamon Press, New York, 1986, pp. 90Search in Google Scholar
21 Manjunatha, H. C.;Rudraswamy, B.: Bremsstrahlung exposure of tissues from beta-therapeutic nuclides. Nucl Instrum Meth A621 (2010) 58110.1016/j.nima.2010.05.021Search in Google Scholar
22 Manjunatha, H. C.;Rudraswamy, B.: Beta induced Bremsstrahlung exposure in DNA and RNA. Phys Med27 (2011) 18810.1016/j.ejmp.2010.12.002Search in Google Scholar PubMed
23 Markowicz, A. A.;VanGriken, R. E.: Composition dependence of Bremsstrahlung background in electron-probe X-ray microanalysis. Anal Chem1984; 56: 2049e55.10.1021/ac00276a016Search in Google Scholar
24 Shivaramu: Modified Kramer's law for Bremsstrahlung produced by complete beta particle absorption in thick targets and compounds. J Appl Phys68 (1990) 122510.1063/1.346721Search in Google Scholar
25 Zanzonico, P.B.;Binkert, B. L.;Goldsmith, S. J.: Bremsstrahlung exposure from pure -ray emitters. J Nucl Med40 (1999) 1024Search in Google Scholar
26 Johns, H. E.;Cunningham, J. R.: The physics of radiology. 3rd ed.Spingfield, IL: Charles C, Thomas; 1969, p. 164Search in Google Scholar
27 Zanzonico, P. B.;Brill, A. B.;Becker, D.V.: Radiation dosimetry. In:Wagner, H. N.;Szabo, Z.;Buchanan, J. W. (editors) Principle of nuclear medicine. 2nd ed.Philadelphia, PA: WB saunders; 1995, p. 106–34Search in Google Scholar
28 Christy, M.;Eckerman, K. F.: Specific absorbed fractions of energy at various ages from internal photon sources, vol. IeVII. Oak ridge: Oak ridge national laboratory; 1987, ORNL/TM838110.2172/6233735Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Simulation of HALDEN IFA-650 loss-of-coolant accidents tests with TRACE
- On the evaluation of a fuel assembly design by means of uncertainty and sensitivity measures
- Best estimate plus uncertainty analysis of LBLOCA for Indian PHWR
- Remarks on boiling water reactor stability analysis – part 1: theory and application of bifurcation analysis
- Upgrading (V)HTR fuel elements for generationIV goals by SiC encapsulation
- Investigation of the Ru-43LV fuel behaviour under LOCA conditions in a CANDU reactor
- PCA-based ANN approach to leak classification in the main pipes of VVER-1000
- Analytical investigation of the properties of the neutron noise induced by vibrating absorber and fuel rods
- Diffusion approximation for certain scattering parameters of the Anli-Güngör phase function
- Calculation of beta induced Bremsstrahlung exposure from therapeutic radionuclide 198Au in tissues, DNA and RNA
- Dosimetric aspects of 103Pd radioactive stent source
- Radiological significance of coal, slag and fly ash samples from the Eastern Black Sea region
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Simulation of HALDEN IFA-650 loss-of-coolant accidents tests with TRACE
- On the evaluation of a fuel assembly design by means of uncertainty and sensitivity measures
- Best estimate plus uncertainty analysis of LBLOCA for Indian PHWR
- Remarks on boiling water reactor stability analysis – part 1: theory and application of bifurcation analysis
- Upgrading (V)HTR fuel elements for generationIV goals by SiC encapsulation
- Investigation of the Ru-43LV fuel behaviour under LOCA conditions in a CANDU reactor
- PCA-based ANN approach to leak classification in the main pipes of VVER-1000
- Analytical investigation of the properties of the neutron noise induced by vibrating absorber and fuel rods
- Diffusion approximation for certain scattering parameters of the Anli-Güngör phase function
- Calculation of beta induced Bremsstrahlung exposure from therapeutic radionuclide 198Au in tissues, DNA and RNA
- Dosimetric aspects of 103Pd radioactive stent source
- Radiological significance of coal, slag and fly ash samples from the Eastern Black Sea region