Home Technology Remarks on boiling water reactor stability analysis – part 1: theory and application of bifurcation analysis
Article
Licensed
Unlicensed Requires Authentication

Remarks on boiling water reactor stability analysis – part 1: theory and application of bifurcation analysis

  • C. Lange , D. Hennig , A. Hurtado , R. Schuster , B. Lukas and C. Aguirre
Published/Copyright: May 18, 2013
Become an author with De Gruyter Brill

Abstract

Modern theoretical methods for analysing the stability behaviour of Boiling Water Reactors (BWRs) are relatively reliable. The analysis is performed by comprehensive validated system codes comprising 3D core models and one-dimensional thermal-hydraulic parallel channel models in the frequency (linearized models) or time domain. Nevertheless the spontaneous emergence of stable or unstable periodic orbits as solutions of the coupled nonlinear differential equations determining the stability properties of the coupled thermal-hydraulic and neutron kinetic (highly) nonlinear BWR system is a surprising phenomenon, and it is worth thinking about the mathematical background controlling such behaviour. In particular the coexistence of different types of solutions, such as the coexistence of unstable limit cycles and stable fixed points, are states of stability, not all nuclear engineers are familiar with. Hence the part I of this paper is devoted to the mathematical background of linear and nonlinear stability analysis and introduces a novel efficient approach to treat the nonlinear BWR stability behaviour with both system codes and so-called (advanced) reduced order models (ROMs). The efficiency of this approach, called the RAM-ROM method, will be demonstrated by some results of stability analyses for different power plants.

Kurzfassung

Die modernen theoretischen Methoden zur Analyse des Stabilitätsverhaltens von Siedewasserreaktoren (SWRs) sind relativ zuverlässig. Stabilitätsanalysen werden mit umfassend validierten Systemcodes, die 3D-Kernmodelle und eindimensionale thermohydraulische Parallelkanalmodelle enthalten, im Frequenzbereich (linearisierte Modelle) und im Zeitbereich durchgeführt. Trotzdem ist das spontane Auftreten von stabilen und instabilen Grenzzyklen als Lösungen der gekoppelten nichtlinearen Differenzialgleichungen, die die Stabilitätseigenschaften des gekoppelten thermohydraulischen und neutronenkinetischen (hoch) nichtlinearen SWR-Systems bestimmen, ein überraschendes Phänomen und es ist durchaus wert, über den mathematischen Hintergrund, der ein solches Verhalten bestimmt, nachzudenken. Insbesondere hat die Koexistenz von verschiedenen Lösungen, wie z.B. die Koexistenz instabiler Grenzzyklen und stabiler Fixpunkte des Systems Stabilitätszustände zur Folge, mit denen viele Reaktoringenieure nicht vertraut sind. Der Teil 1 des Artikels ist daher vor allem dem Verständnis des mathematischen Hintergrundes der linearen und nichtlinearen Stabilitätsanalyse gewidmet. Es wird eine neue, effiziente Vorgehensweise bei der rechnerischen Behandlung des nichtlinearen Stabilitätsverhaltens dargestellt, bei der sowohl moderne Systemcodes als auch fortgeschrittene, vereinfachte Reaktormodelle (sog. Reduced Order Models, ROMs) nebeneinander und sich ergänzend verwendet werden. Die Effizienz dieser Vorgehensweise, RAM-ROM Methode genannt, wird anhand der Ergebnisse einiger Stabilitätsanalysen zu unterschiedlichen Kernkraftwerken mit Siedewasserreaktoren demonstriert.

References

1 Kirchenmayer, A.: Dynamik des Siedewasserreaktors mit Naturumlauf. Nukleonik, 4 (1962) 122136Search in Google Scholar

2 Miro, R.;Ginestar, D.;Hennig, D.;Verdu, G.: On the Regional Oscillation Phenomenon in BWR. Progress in Nuclear Energy36 (2000) 18922910.1016/S0149-1970(00)00005-6Search in Google Scholar

3 Dokhane, A.: BWR Stability and Bifurcation Analysis using a Novel Reduced Order Mode and the System Code RAMONA. Doctoral Thesis, EPFL; Switzerland, 200410.1115/ICONE12-49050Search in Google Scholar

4 Lange, C.: Advanced nonlinear stability analysis of boiling water nuclear reactors. Ph.D. Dissertation; TU Dresden; Germany; 2009Search in Google Scholar

5 Hennig, D.: A Study of Boiling Water Reactor Stability Behaviour. Nuclear Technology125 (1999) 1031Search in Google Scholar

6 Karve, A. A.;Rizwanuddin, Dorning J. J.: Stability Analysis of BWR Nuclear Coupled Thermal-Hydraulics Using a Simple Model. Nucl. Eng. and Design177 (1997) 15517710.1016/S0029-5493(97)00192-1Search in Google Scholar

7 Lange, C.;Hennig, D.;Hurtado, A.: An Advanced Reduced Order Model for BWR Stability Analysis. Progress in Nuclear Energy53 (2011) 13916010.1016/j.pnucene.2010.07.006Search in Google Scholar

8 van Bragt, D. D. B.: Analytical Modelling of BWR Dynamics. PhD Thesis of the Technical University Delft, Delft, The Nederland, 1998Search in Google Scholar

9 Zhou, Q.: Stability and Bifurcation Analyses of Reduced-Order Models of Forced and Natural Circulation BWRs. Ph.D. Dissertation, University of Illinois at Urbana-Champaign, 2006Search in Google Scholar

10 Analytis, M.;Hennig, D.;Karlsson, J. K.-H.: The Physical Mechanism of Core-Wide and Local Instabilities at the Forsmark-1 BWR. Nuclear Engineering and Design205 (2001) 919510.1016/S0029-5493(00)00371-XSearch in Google Scholar

11 Lange, C.;Hennig, D.;Hurtado, A.;Dykin, V.;Demazière, C.: Comments on Local Power Oscillation Phenomenon at BWRs. Progress in Nuclear Energy, 60, (2012) 738810.1016/j.pnucene.2012.04.008Search in Google Scholar

12 Nayfeh, A. H.;Balachandran, B.: Applied Nonlinear Dynamics. John Wiley & Sons, Inc, New York, Chichester, Brisbane, Toronto, Singapore, 199510.1002/9783527617548Search in Google Scholar

13 Guggenheimer, J.;Holmes, P.: Nonlinear Oscillation, Dynamical Systems, and Bifurcation in Vector Fields. Applied Mathematical Sciences42, Springer Verlag, 198410.1007/978-1-4612-1140-2Search in Google Scholar

14 Karve, A. A.: Nuclear-Coupled Thermal-hydraulic Stability Analysis of Boiling Water Reactors. Ph.D. Dissertation, Virginia University, USA, 1998Search in Google Scholar

15 Hetrick, D. L.: Dynamics of Nuclear Reactors. The University of Chicago Press; Chicago and London, 1971Search in Google Scholar

16 Akcasu, Z.;Lellouche, G. S.;Shotkin, L. M.: Mathematical Methods in the Reactor Dynamics. Academic Press, New York and London, 1971Search in Google Scholar

17 Shotkin, L. M.;Hetrick, D. L.;Schmidt, Th. R.: Effect of delayed Neutrons on Autonomous Nonlinear Power Oscillations. NSE42 (1970) 1015Search in Google Scholar

18 Hassard, B. D.;Kazarinoff, N. D.;Wan, Y. H.: Theory and Application of Hopf Bifurcation. Cambridge University Press, Cambridge, London, New York, Melbourne, Sydney, 1981Search in Google Scholar

19 Lange, C.;Hennig, D.;Hurtado, A.: A Saddle-Node Bifurcation of Cycles Found in the Parameter Space of a BWR. International Journal of Bifurcation and Chaos22 (2012) 210.1142/S0218127412500411Search in Google Scholar

20 Lange, C.;Hennig, D.;Schulze, M.;Hurtado, A.: Comments on the Application of Bifurcation Analysis in BWR Stability Analysis. Progress in Nuclear Energy, submitted in April 201210.1016/j.pnucene.2013.04.003Search in Google Scholar

21 Dokhane, A.;Hennig, D.;Rizwanuddin, Chawla R.: BWR stability and bifurcation analysis using reduced order models and system codes: Identification of a subcritical Hopf bifurcation using RAMONA. Annals of Nuclear Energy34 (2007) 79280210.1016/j.anucene.2007.04.003Search in Google Scholar

22 Dokhane, A.;HennigD.;Chawla, R.;Rizwan-Uddin: Semi-analytical bifurcation analysis of two-phase flow in a heated channel. International Journal of Bifurcation and Chaos15 (2005) 2395240910.1142/S0218127405013381Search in Google Scholar

23 Dokhane, A.;Hennig, D.;Rizwanuddin,ChawlaR.: Nonlinear Stability Analysis with a Novel BWR Reduced Order Model. Physor 2002, Proc. of International Conference on the New Frontiers of Nuclear Technology: Reactor Physics, Safety and High Performance Computing, Seoul, Korea, Oct. 7–10, 2002, CD-ROMSearch in Google Scholar

24 Dokhane, A.;Hennig, D.;Rizwanuddin,Chawla, R.: Nuclear-Coupled Thermal-Hydraulic Nonlinear Stability Analysis Using a Novel BWR Reduced Order Model: Part1 – The Effect of Using Drift Flux Versus Homogeneous Equilibrium Models, Part2: Stability Limits for In-phase and Out-of-phase Oscillations. ICONE11, Tokyo, Japan, April 20–23, 2000Search in Google Scholar

25 Lahey, R. T.Jr.: Wave propagation phenomena in two-phase flow. in: Boiling Heat Transfer, Elsevier Science Publishers B. V., (1992) 123168Search in Google Scholar

26 Munoz-Cobo, J. L.;Vedu, G.: Application of Hopf Bifurcation and Variational Method to the study of Limit Cycles in Boiling Water Reactors, Ann. of Nucl. Energy15 (1991) 26930210.1016/0306-4549(91)90012-MSearch in Google Scholar

27 March-Leuba: Dynamical Behaviour of Boiling Water Reactor. Ph.D. Thesis, The University of Tennessee, Knoxville, December 1984Search in Google Scholar

28 Lahey, R. T.Jr. (editor): Boiling Heat Transfer. Elsevier Science Publishers, (1992) 271315Search in Google Scholar

29 Rizzwan-uddin: Linear and Nonlinear Stability Analyses of Density-Wave Oscillations in Heated Channels. Ph.D. Dissertation of University of Illinois, USA; 1981Search in Google Scholar

30 Achard, J. J.;Drew, L. A.;Lahey, R. T.: The Analysis of Nonlinear Density-Wave Oscillations in Boiling Channels. J. Fluid Mech.155 (1985) 21323210.1017/S0022112085001781Search in Google Scholar

31 AuriaF. D. (editor): State of the Art Report on BWR Stability. NEA/CSNI/ R(96)21, OECD/GD(97)13, 1997Search in Google Scholar

32 Rizzwan-uddin: Linear and Nonlinear Stability Analyses of Density-Wave Oscillations in Heated Channels. Ph.D. Dissertation of University of Virginia, USA, 1981Search in Google Scholar

33 Yokomizo, O.;Sumida, I.;Anegawa, T.;Yoshimoto, Y.;Fukahori, T.: Examination of Nuclear Thermal Hydraulic Oscillation Modes, in: BWR Core. in: International Workshop on Boiling Water Stability, 17th-19th October 1990, Holtsville, New York, CSNI Report 178, 175–189Search in Google Scholar

34 Tsuji, M.;Nishio, K.;Narita, M.;Ogawa, Y.;Mori, M.: Stability Analysis of BWR Using Bifurcation Theory. Journ. of Nucl. Sciences and Technology30 (1993) 1107111910.1080/18811248.1993.9734596Search in Google Scholar

35 March-Leuba, Cacuci D. G.;Perez, R. B.: Nonlinear Dynamics and Stability, Part 1. NSE93 (1986) 111123, Part 2. NSE. 93 (1986) 124–136 (see also: March-Leuba, J.; Blakeman, E. D.: A Mechanism for Out-of-Phase Power Instabilities in Boiling Water Reactors. Nuclear Science and Engineering 107 (1991) 173–179)Search in Google Scholar

36 Akcasu, A. Z.: Mean Square Instability in Boiling Reactors. NSE10 (1961) 337345Search in Google Scholar

37 Wulff, W.;Cheng, H. S.;Diamond, D. J.;Khatib-Rhabar, M.: A Description and Assessment of RAMONA-3B Mod.0, cycle4: A Computer Code with 3D Neutron Kinetics for BWR System Transients. NUREG/CR-3664, BNL-NUREG-51746, Brookhaven National Laboratory, 1984Search in Google Scholar

38 Rizwan-uddin: Sub- and Supercritical Bifurcations and Turning Points in a Simple BWR Model. PHYSOR 2000, Pittsburgh, USA, May 2000, CD-ROMSearch in Google Scholar

39 Lange, C.;Hennig, D.;Llorens, V. G.;Verdù, G.: Advanced BWR stability analysis with a reduced order model and system code. Proceedings of the 15th International Conference on Nuclear Engineering, Nagoya, Japan, April 22–26, 2007Search in Google Scholar

40 Lange, C.;Hennig, D.;Hurtado, A.: Remarks to a novel nonlinear BWR stability analysis approach (RAM-ROM methodology). Proceedings of ANFM IV (on CD-ROM, American Nuclear Society, LaGrange Park, IL) April 12–15; Hilton Head Island, South Carolina; USA; 2009Search in Google Scholar

41 van Teefflen: Kernkraftwek Brunsbüttel, Stabilitätsmessungen zum Zyklus 16. KKB Technischer Bericht, 110/01, Dez. 2001Search in Google Scholar

42 Oguma, R.;Bergdahl, B-G.: Investigation of BWR stability at KKW Brunsbüttel. GSE-05-003, Februar 2005Search in Google Scholar

43 Oguma, R.;Bergdahl, B-G.: Investigation of BWR stability during Cycle 18 operation at KKW Brunsbüttel. GSE-05-006, June 2005Search in Google Scholar

Received: 2012-02-24
Published Online: 2013-05-18
Published in Print: 2012-11-01

© 2012, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110274/html
Scroll to top button