Home Technology PCA-based ANN approach to leak classification in the main pipes of VVER-1000
Article
Licensed
Unlicensed Requires Authentication

PCA-based ANN approach to leak classification in the main pipes of VVER-1000

  • K. Hadad , M. Jabbari , Z. Tabadar and M. Hashemi-Tilehnoee
Published/Copyright: May 18, 2013
Become an author with De Gruyter Brill

Abstract

This paper presents a neural network based fault diagnosing approach which allows dynamic crack and leaks fault identification. The method utilizes the Principal Component Analysis (PCA) technique to reduce the problem dimension. Such a dimension reduction approach leads to faster diagnosing and allows a better graphic presentation of the results. To show the effectiveness of the proposed approach, two methodologies are used to train the neural network (NN). At first, a training matrix composed of 14 variables is used to train a Multilayer Perceptron neural network (MLP) with Resilient Backpropagation (RBP) algorithm. Employing the proposed method, a more accurate and simpler network is designed where the input size is reduced from 14 to 6 variables for training the NN. In short, the application of PCA highly reduces the network topology and allows employing more efficient training algorithms. The accuracy, generalization ability, and reliability of the designed networks are verified using 10 simulated events data from a VVER-1000 simulation using DINAMIKA-97 code. Noise is added to the data to evaluate the robustness of the method and the method again shows to be effective and powerful.

Kurzfassung

In dieser Arbeit wird auf der Basis neuronaler Netzwerke ein Fehlerdiagnoseansatz vorgestellt, der die rasche Identifizierung von Rissen und Lecks erlaubt. Die Methode verwendet die Hauptkomponentenanalyse (PCA) um das Ausmaß der Problematik zu reduzieren. Ein solcher Ansatz führt zu einer schnelleren Diagnose und erlaubt eine bessere graphische Darstellung der Ergebnisse. Um die Effektivität des verwendeten Ansatzes zu zeigen werden zwei Methoden zum Training des neuronalen Netzwerks (NN) verwendet. Zuerst wird eine Trainingsmatrix bestehend aus 14 Variablen verwendet um mehrschichtige Perzeptron-Netze (MLP) mit Resilient Backpropagation (RBP) Algorithmen zu trainieren. Durch Anwendung dieser Methode wird ein genaueres und einfacheres Netzwerk gestaltet, bei dem die Eingangsgröße von 14 auf 6 Variable reduziert wird. Die Anwendung der PCA reduziert die Netzwerktopologie erheblich und erlaubt die Verwendung effizienterer Trainingsalgorithmen. Die Genauigkeit, die Fähigkeit zur Verallgemeinerung und die Zuverlässigkeit der gestalteten Netzwerke werden verifiziert mit 10 Ereignisdaten einer WWER-1000 Simulation mit Hilfe des DINAMIKA-97 Codes. Den Daten wird Rauschen zugefügt um die Robustheit des Verfahrens besser bewerten zu können, wobei sich wieder die Effektivität und Leistungsfähigkeit dieser Methode zeigt.

References

1 Lewis, E. E.: Nuclear power reactor safety. Wiley-interscience publication, 1977, p. 105106Search in Google Scholar

2 Morozov, S. A.;Kovtun, S. N.;Budarin, A. A.;Dvornikov, P. A.;Kudryaev, A. A.;Kondratovich, F. V.;Shutov, P. S.;Shvetsov, D. M.;Konoplev, N. P.: Development of an acoustic leak monitoring system. Atomic Energy103 (2007) 92593110.1007/s10512-007-0149-1Search in Google Scholar

3 Kiselev, V. A.;Rivkin, E. Yu.: Application of the leak before rupture concept in the analysis of nuclear power plant safety. Atomic Energy25 (1993) 426430Search in Google Scholar

4 Hashemi-Tilehnoee, M.,Pazirandeh, A.,Tashakor, S.: HAZOP-study on heavy water research reactor primary cooling system. Annals of Nuclear Energy37 (2010) 42843310.1016/j.anucene.2009.12.006Search in Google Scholar

5 Aleksandrov, P. A.,Kalechits, V. I.;Khozyasheva, E. S.;Chechuev, P. V.: Detecting small leaks in pipes in nuclear power plants by measuring aerosol parameters. Atomic Energy97 (2004) 620625Search in Google Scholar

6 Zhao, K.;Upadhyaya, B.R.: Model based approach for fault detection and isolation of helical coil steam generator systems using principal component analysis. IEEE Transactions on Nuclear Science53 (2006) 2343235210.1109/TNS.2006.876049Search in Google Scholar

7 Hadad, K.;Mortazavi, M.;Safavi, A.;Mastali, M.: Enhanced neural network based fault detection of a VVER nuclear power plant with the aid of principal component analysis IEEE Transactions on Nuclear Science55(6) (2008) 36113617.Search in Google Scholar

8 Hadad, K.;Pourahmadi, M.;Majidi-Maraghi, H.: Fault diagnosis and classification based on wavelet transform and neural network. Progress in Nuclear Energy53 (2011) 414710.1016/j.pnucene.2010.09.006Search in Google Scholar

9 Bykov, M. A.;Zaitsev, S. I.;Alekhin, G. V.;Kurbaev, S. A.;Egorov, A. P.;Gusev, V. I.: The development of the TRAP-97 software system. A sensitivity analysis. Thermal Engineering53 (2006) 536110.1134/S0040601506010095Search in Google Scholar

10 Santosh, T. V.;Gopika, V.;Saraf, R. K.;Ghosh, A.K.;Kushwaha, H. S.: Application of artificial neural networks to nuclear power plant transient diagnosis. Reliability Engineering and System Safety92 (2007) 1468147210.1016/j.ress.2006.10.009Search in Google Scholar

11 Zare, A.;Nematollahi, M. R.;Hadad, K.;Mozaffari, M. A.: Typical steam generator tube rupture (SGTR) effect on thermo-hydraulic parameters of VVER-1000 primary loop. ICENES 2007, Istanbul, TurkeySearch in Google Scholar

12 Samani, N.;Moghadam, M. G.;Safavi, A. A.: A simple neural network model for the determination of aquifer parameters. Journal of Hydrology340 (2007) 11110.1016/j.jhydrol.2007.03.017Search in Google Scholar

13 Afifi, A. A.;Clark, V.: Computer aided multivariate analysis. Chapman and Hall, London, 199610.1007/978-1-4899-3342-3Search in Google Scholar

14 Gaitani, N.;Lehmann, C.;Santamouris, M.;Mihalakakou, G.;Patargias, P.: Using principal component and cluster analysis in the heating evaluation of the school building sector. Applied Energy87 (2010) 2079208610.1016/j.apenergy.2009.12.007Search in Google Scholar

Received: 2012-01-15
Published Online: 2013-05-18
Published in Print: 2012-11-01

© 2012, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110224/html
Scroll to top button