Solution of the radiative transfer equation with the successive order scattering transport approximation and its application to a biological medium
-
H. Akcay
Abstract
The successive order scattering approximation method is used to study the radiative transfer equation. By separating the coherent component of the scattered flux, the transport equation is represented in terms of each order scattering flux and a simplified solution is obtained with this approach. The method is then used to calculate the reflected flux and the transmitted flux with three different phase functions. A new boundary condition has been added for the first order forwardly scattered flux. Thus it becomes possible to study the transmittance. We compare our results with the available data for a biological medium.
Kurzfassung
Die „Successive Order of Scattering“ Methode wird angewendet zur Lösung der Strahlungstransportgleichung. Durch Trennung der kohärenten Komponenten des gestreuten Flusses wird die Transportgleichung dargestellt in Form eines gestreuten Flusses mit einer beliebigen Ordnung und man erhält mit diesem Ansatz eine vereinfachte Lösung. Die Methode wird dann verwendet zur Berechnung des reflektierten und des transmittierten Flusses mit drei verschiedenen Phasenfunktionen. Eine neue Randbedingung wurde festgelegt für den vorwärts gestreuten Fluss erster Ordnung. So ist es möglich, die Transmittanz zu untersuchen. Die erhaltenen Ergebnisse werden verglichen mit den vorhandenen Daten für ein biologisches Medium.
References
1 Arridge, S. R.; Hiraoka, M.; Schweiger, M.: Statistical basis for the determination of optical path length in tissue. Phys. Med. Bio.40 (1995) 1539–155810.1088/0031-9155/40/9/011Search in Google Scholar
2 Jiang, H. B.; Paulsen, K. D.; Osterberg, U. L.; Pogue, B. W.; Petterson, M. S.: Optical-image reconstruction using frequency domain data simulations and experiments, J. Opt.Soc. Am. A13 (1996) 253–26610.1364/JOSAA.13.000253Search in Google Scholar
3 Moscoso, M.; Keller, J. B.; Papanicolaou, G.: Depolarization and blurring of Optical images by biological tissue. J. Opt. Am. A18 (2001) 948–96010.1364/JOSAA.18.000948Search in Google Scholar
4 Kim, A. D.; Moscoso, M.: Radiative Transport Computations for Optical Beams. J. Comput. Phys.185 (2003) 50–6010.1016/S0021-9991(02)00047-5Search in Google Scholar
5 Reynolds, L.; Johnson, C.; Ishimura, A.: Diffuse reflectance from a finite medium: application to the modeling of fiber catheters. Applied Optics15 (1976) 205910.1364/AO.15.002059Search in Google Scholar
6 Reynolds, L.; Johnson, C.: Three dimensional optical diffusion theory for pectrometric instrumentation design. In Proc. of the 24th Annual Conf. on Eng. in Med. and Bio.13 (1971) 163Search in Google Scholar
7 Pederson, G. D.; McCormic, N. J.; Reynolds, L. O.: Transport calculations for light scattering in blood. Biophysical J.16 (1976) 199–20710.1016/S0006-3495(76)85681-0Search in Google Scholar
8 Kim, J.: Successive order scattering transport approximation for laser light propagation in the whole blood medium. IEEE Trans. Biomed. Eng.45 (1998) 505–51010.1109/10.664206Search in Google Scholar PubMed
9 Chandrasekhar, S.: Radiative Transfere (1960) Dover, New YorkSearch in Google Scholar
10 Duderstadt, J. J. and Martin, W. R.: Transport theory. New York (1979) Wiley-InterscienceSearch in Google Scholar
11 Reynolds, L.: Optical diffuse reflectance and the transmittance from an anisotropic finite blood medium. Ph. D. dissertation, Electrical Engineering Department, Univ. Washington Seattle, WA 1975Search in Google Scholar
12 Arnfield, M. R.; Tulip, J.; Mcphee, M. S.: Optical Propagation in tissue with anisotropic scattering. IEEE trans. Biomed. Eng.35 (1988) 372–38110.1109/10.1396Search in Google Scholar PubMed
13 Van de Hulst, H. C.: Multiple light scattering Tables, Formulas and Applications. Academic, New York1980Search in Google Scholar
14 Aydin, E. D.; de Oliveria, C. R. E.; Goddard, A. J. H.: A comparison between transport and diffusion calculations using a finite element-spherical harmonics radiation transport method. Med. Phys.29 (2002) 2013–202310.1118/1.1500404Search in Google Scholar PubMed
15 Kim, A. D.; Moscoso, M.: Beam propagation in sharply peaked forward scattering media. J. Opt. Soc. Am A., 21 (2004) 797–80310.1364/JOSAA.21.000797Search in Google Scholar
16 Kim, A. D.; Keller, J. B.: Light propagation in biological tissue. J. Opt. Soc. Am. A20 (2003) 92–9810.1364/JOSAA.20.000092Search in Google Scholar
17 Liu, P.: A new phase function approximating to Mie scattering for radiative transport equation. Phys. Med. Biol.39 (1994) 1025–103610.1088/0031-9155/39/6/008Search in Google Scholar PubMed
18 Johnson, C. C.: Optical diffusion in blood. IEEE trans. Biomed. Eng.17 (1970) 129–13310.1109/TBME.1970.4502711Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Analytical assessment for stress corrosion fatigue of CANDU fuel elements under load following conditions
- Development of a thermal-hydraulic analysis code for annular fuel assemblies
- Reduction of fluid property errors of various thermohydraulic codes for supercritical water systems
- Computational fluid dynamics validation study of steam condensation on the containment walls
- CFD analysis of a hydraulic valve for cavitating flow
- Thermal plume behaviour in the Kadra reservoir at Kaiga atomic power station – Part 2: studies for the case of four and six units in operation
- 124I production for PET imaging at a cyclotron
- Investigation of ground state features of some medical radionuclides
- Solution of the radiative transfer equation with the successive order scattering transport approximation and its application to a biological medium
- Solving the constant source problem for the quadratic anisotropic scattering kernel using the modified FN method
- Application of the Laplace transform method for computational modelling of radioactive decay series
- A standing wave reactor by continuous radial fuel shuffling
- Technical Notes/Technische Mitteilungen
- On the radial flux shape of a fast standing wave reactor operated by radial fuel shuffling
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Analytical assessment for stress corrosion fatigue of CANDU fuel elements under load following conditions
- Development of a thermal-hydraulic analysis code for annular fuel assemblies
- Reduction of fluid property errors of various thermohydraulic codes for supercritical water systems
- Computational fluid dynamics validation study of steam condensation on the containment walls
- CFD analysis of a hydraulic valve for cavitating flow
- Thermal plume behaviour in the Kadra reservoir at Kaiga atomic power station – Part 2: studies for the case of four and six units in operation
- 124I production for PET imaging at a cyclotron
- Investigation of ground state features of some medical radionuclides
- Solution of the radiative transfer equation with the successive order scattering transport approximation and its application to a biological medium
- Solving the constant source problem for the quadratic anisotropic scattering kernel using the modified FN method
- Application of the Laplace transform method for computational modelling of radioactive decay series
- A standing wave reactor by continuous radial fuel shuffling
- Technical Notes/Technische Mitteilungen
- On the radial flux shape of a fast standing wave reactor operated by radial fuel shuffling