Reduction of fluid property errors of various thermohydraulic codes for supercritical water systems
-
A. R. Imre
and I. Tiselj
Abstract
Various thermohydraulic codes (like WAHA, ATHLET, RELAP) work perfectly for pressurized water and steam, but fail to give reliable results for supercritical water. This might be a surprise, because theoretically Supercritical Water (SCW) should be a simpler system than normal water, due to the lack of phase transition and two-phase flow in the supercritical region. Some of the problem is caused by low accuracy of the fluid properties due to the presence of the pseudo-critical line. In this presentation we would like to address this pseudocriticality-related problem and to establish a method for the error-reduction.
Kurzfassung
Aktuelle thermohydraulische Programmsysteme eignen sich sehr gut zur Berechnung der thermodynamischen Eigenschaften von Wasser und Wasserdampf bei verschiedenen Drücken. Sobald jedoch die zu berechnenden Zustände des Wassers den kritischen Punkt überschreiten, versagt die Berechnung der thermodynamischen Eigenschaften. Eigentlich überrascht dies, da überkritisches Wasser ein einfacher zu berechnendes System darstellt als normales Wasser. Im überkritischen Bereich tritt kein Phasenübergang und auch keine Zweiphasenströmung auf. Einer der Gründe für die Nichtberücksichtigung überkritischer Zustände von Wasser scheint die bislang niedrige Genauigkeit der thermodynamischen Flüssigkeitseigenschaften im Übergangsbereich, der sog. pseudokritischen Zone, zu sein. Die Eigenschaften überkritischer Fluide ändern sich insbesondere kurz vor Erreichen der überkritischen Region nicht monoton und liegen nur tabelliert vor. In diesem Beitrag wird eine Methode vorgestellt, mit der die thermodynamischen Eigenschaften von Wasser im pseudokritischen Bereich mit höherer Genauigkeit in thermohydraulische Programmsysteme implementiert werden können.
References
1 Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maráczy, C.; Kyrki-Rajamäki, R.; Souyri, A.; Dumaz, P.: High performance light water reactor. Nuclear Engineering and Design, 221 (2003) 167–18010.1016/S0029-5493(02)00331-XSearch in Google Scholar
2 Ishiwatari, Y.; Oka, Y.; Koshizuka, S.: Safety of the Super LWR. Nuclear Engineering and Technology, 39 (2007) 257–27210.5516/NET.2007.39.4.257Search in Google Scholar
3 Házi, G.; Farkas, I.: On the pressure dependency of physical parameters in case of heat transfer problems of supercritical water. Journal of Engineering for Gas Turbines and Power – Transactions of the ASME, 131 (2009) 01290410.1115/1.2983135Search in Google Scholar
4 Kiss, A.; Laurien, E.; Aszodi, A.; Zhu, Y.: Numerical simulation on a HPLWR fuel assembly flow with one revolution of wrapped wire spacers. Kerntechnik, 75 (2010) 148–157Search in Google Scholar
5 Mignot, G.; Anderson, M.; Corradini, M.: Critical flow experiment and analysis for supercritical fluid. Nuclear Engineering and Technology, 40 (2007) 133–13810.5516/NET.2008.40.2.133Search in Google Scholar
6 RELAP5 manual, NUREG/CR-5535 vol. VIII, Information Systems Laboratories, Inc., Rockville, Maryland, 2006Search in Google Scholar
7 Maráczy, C.; Keresztúri,A.; Trosztel, I.; Hegyi, G.: Safety analysis of reactivity initiated accidents in a HPLWR reactor by the coupled ATHLET-KIKO3D code. Progress in Nuclear Energy52 (2010) 190–19610.1016/j.pnucene.2009.06.005Search in Google Scholar
8 Tiselj, I.; Horvat, A.; Čverne, G.; Gale, J.; Parzer, I.; Mavko, B.; Giot, M.; Seynhaeve, J. M.; Kucienska, B.; Lemonnier, H.: WAHA3 Code manual. Jožvef Stefan Institute, Ljubljana, Slovenija, 2004Search in Google Scholar
9 Barna, I. F.; Ezsol, G.: Multiple condensation induced water hammer events, experiments and theoretical investigation. Kerntechnik2011) 231–23710.3139/124.110154Search in Google Scholar
10 Stanley, H. E.; Kumar, P.; Franzese, G.; Xu, L.; Yan, Z.; Mazza, M. G.; Buldyrev, S. V.; Chen, S. H.; Mallamace, F.: Liquid polyamorphism: possible relation to the anomalous behaviour of water. European Physical Journal161 (2008) 1–17Search in Google Scholar
11 Shamsundar, N.; Lienhard, J. H.: Equation of states and spinodal lines – A review. Nuclear Engineering and Design141 (1993) 269–28710.1016/0029-5493(93)90106-JSearch in Google Scholar
12 Imre, A. R.; Maris, H. J.; Williams, P. R. (eds.): Liquids Under Negative Pressure. NATO Science Series, Kluwer, Dordrecht, 200210.1007/978-94-010-0498-5Search in Google Scholar
13 Schulenberg, T.; Starflinger, J.; Heinecke, J.: Three-pass core design proposal for a high performance light water reactor. Progress in Nuclear Energy50 (2008) 526–53110.1016/j.pnucene.2007.11.038Search in Google Scholar
14 SchulenbergT.; BittermannD.; StarflingerJ.: Design Concept of the High Performance Light Water Reactor. Kerntechnik74 (2009) 22–27Search in Google Scholar
15 Wagner, W.; Pruss, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data31 (2002) 387–53510.1063/1.1461829Search in Google Scholar
16 Deiters, U. K.: ThermoC, http://thermoc.uni-koeln.de/index.html., 2006Search in Google Scholar
17 Imre, A. R.; Barna, I. F.; Ézsöl, G.; Házi, G.; Kraska, T.: Theoretical study of flashing and water hammer in supercritical water cycle during pressure drop. Nuclear Engineering and Design240 (2010) 1569–157410.1016/j.nucengdes.2010.03.008Search in Google Scholar
18 Imre, A. R.; Házi, G.; Horváth, Á.; Maráczy, C.; Mazur, V.; Artemenko, S.: The effect of low-concentration inorganic materials on the behaviour of supercritical water. Nuclear Engineering and Design241 (2011) 296–30010.1016/j.nucengdes.2010.11.011Search in Google Scholar
© 2012, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Analytical assessment for stress corrosion fatigue of CANDU fuel elements under load following conditions
- Development of a thermal-hydraulic analysis code for annular fuel assemblies
- Reduction of fluid property errors of various thermohydraulic codes for supercritical water systems
- Computational fluid dynamics validation study of steam condensation on the containment walls
- CFD analysis of a hydraulic valve for cavitating flow
- Thermal plume behaviour in the Kadra reservoir at Kaiga atomic power station – Part 2: studies for the case of four and six units in operation
- 124I production for PET imaging at a cyclotron
- Investigation of ground state features of some medical radionuclides
- Solution of the radiative transfer equation with the successive order scattering transport approximation and its application to a biological medium
- Solving the constant source problem for the quadratic anisotropic scattering kernel using the modified FN method
- Application of the Laplace transform method for computational modelling of radioactive decay series
- A standing wave reactor by continuous radial fuel shuffling
- Technical Notes/Technische Mitteilungen
- On the radial flux shape of a fast standing wave reactor operated by radial fuel shuffling
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Analytical assessment for stress corrosion fatigue of CANDU fuel elements under load following conditions
- Development of a thermal-hydraulic analysis code for annular fuel assemblies
- Reduction of fluid property errors of various thermohydraulic codes for supercritical water systems
- Computational fluid dynamics validation study of steam condensation on the containment walls
- CFD analysis of a hydraulic valve for cavitating flow
- Thermal plume behaviour in the Kadra reservoir at Kaiga atomic power station – Part 2: studies for the case of four and six units in operation
- 124I production for PET imaging at a cyclotron
- Investigation of ground state features of some medical radionuclides
- Solution of the radiative transfer equation with the successive order scattering transport approximation and its application to a biological medium
- Solving the constant source problem for the quadratic anisotropic scattering kernel using the modified FN method
- Application of the Laplace transform method for computational modelling of radioactive decay series
- A standing wave reactor by continuous radial fuel shuffling
- Technical Notes/Technische Mitteilungen
- On the radial flux shape of a fast standing wave reactor operated by radial fuel shuffling