Home Technology Reduction of fluid property errors of various thermohydraulic codes for supercritical water systems
Article
Licensed
Unlicensed Requires Authentication

Reduction of fluid property errors of various thermohydraulic codes for supercritical water systems

  • A. R. Imre and I. Tiselj
Published/Copyright: April 19, 2013
Become an author with De Gruyter Brill

Abstract

Various thermohydraulic codes (like WAHA, ATHLET, RELAP) work perfectly for pressurized water and steam, but fail to give reliable results for supercritical water. This might be a surprise, because theoretically Supercritical Water (SCW) should be a simpler system than normal water, due to the lack of phase transition and two-phase flow in the supercritical region. Some of the problem is caused by low accuracy of the fluid properties due to the presence of the pseudo-critical line. In this presentation we would like to address this pseudocriticality-related problem and to establish a method for the error-reduction.

Kurzfassung

Aktuelle thermohydraulische Programmsysteme eignen sich sehr gut zur Berechnung der thermodynamischen Eigenschaften von Wasser und Wasserdampf bei verschiedenen Drücken. Sobald jedoch die zu berechnenden Zustände des Wassers den kritischen Punkt überschreiten, versagt die Berechnung der thermodynamischen Eigenschaften. Eigentlich überrascht dies, da überkritisches Wasser ein einfacher zu berechnendes System darstellt als normales Wasser. Im überkritischen Bereich tritt kein Phasenübergang und auch keine Zweiphasenströmung auf. Einer der Gründe für die Nichtberücksichtigung überkritischer Zustände von Wasser scheint die bislang niedrige Genauigkeit der thermodynamischen Flüssigkeitseigenschaften im Übergangsbereich, der sog. pseudokritischen Zone, zu sein. Die Eigenschaften überkritischer Fluide ändern sich insbesondere kurz vor Erreichen der überkritischen Region nicht monoton und liegen nur tabelliert vor. In diesem Beitrag wird eine Methode vorgestellt, mit der die thermodynamischen Eigenschaften von Wasser im pseudokritischen Bereich mit höherer Genauigkeit in thermohydraulische Programmsysteme implementiert werden können.


E-mail:

References

1 Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maráczy, C.; Kyrki-Rajamäki, R.; Souyri, A.; Dumaz, P.: High performance light water reactor. Nuclear Engineering and Design, 221 (2003) 16718010.1016/S0029-5493(02)00331-XSearch in Google Scholar

2 Ishiwatari, Y.; Oka, Y.; Koshizuka, S.: Safety of the Super LWR. Nuclear Engineering and Technology, 39 (2007) 25727210.5516/NET.2007.39.4.257Search in Google Scholar

3 Házi, G.; Farkas, I.: On the pressure dependency of physical parameters in case of heat transfer problems of supercritical water. Journal of Engineering for Gas Turbines and Power – Transactions of the ASME, 131 (2009) 01290410.1115/1.2983135Search in Google Scholar

4 Kiss, A.; Laurien, E.; Aszodi, A.; Zhu, Y.: Numerical simulation on a HPLWR fuel assembly flow with one revolution of wrapped wire spacers. Kerntechnik, 75 (2010) 148157Search in Google Scholar

5 Mignot, G.; Anderson, M.; Corradini, M.: Critical flow experiment and analysis for supercritical fluid. Nuclear Engineering and Technology, 40 (2007) 13313810.5516/NET.2008.40.2.133Search in Google Scholar

6 RELAP5 manual, NUREG/CR-5535 vol. VIII, Information Systems Laboratories, Inc., Rockville, Maryland, 2006Search in Google Scholar

7 Maráczy, C.; Keresztúri,A.; Trosztel, I.; Hegyi, G.: Safety analysis of reactivity initiated accidents in a HPLWR reactor by the coupled ATHLET-KIKO3D code. Progress in Nuclear Energy52 (2010) 19019610.1016/j.pnucene.2009.06.005Search in Google Scholar

8 Tiselj, I.; Horvat, A.; Čverne, G.; Gale, J.; Parzer, I.; Mavko, B.; Giot, M.; Seynhaeve, J. M.; Kucienska, B.; Lemonnier, H.: WAHA3 Code manual. Jožvef Stefan Institute, Ljubljana, Slovenija, 2004Search in Google Scholar

9 Barna, I. F.; Ezsol, G.: Multiple condensation induced water hammer events, experiments and theoretical investigation. Kerntechnik2011) 23123710.3139/124.110154Search in Google Scholar

10 Stanley, H. E.; Kumar, P.; Franzese, G.; Xu, L.; Yan, Z.; Mazza, M. G.; Buldyrev, S. V.; Chen, S. H.; Mallamace, F.: Liquid polyamorphism: possible relation to the anomalous behaviour of water. European Physical Journal161 (2008) 117Search in Google Scholar

11 Shamsundar, N.; Lienhard, J. H.: Equation of states and spinodal lines – A review. Nuclear Engineering and Design141 (1993) 26928710.1016/0029-5493(93)90106-JSearch in Google Scholar

12 Imre, A. R.; Maris, H. J.; Williams, P. R. (eds.): Liquids Under Negative Pressure. NATO Science Series, Kluwer, Dordrecht, 200210.1007/978-94-010-0498-5Search in Google Scholar

13 Schulenberg, T.; Starflinger, J.; Heinecke, J.: Three-pass core design proposal for a high performance light water reactor. Progress in Nuclear Energy50 (2008) 52653110.1016/j.pnucene.2007.11.038Search in Google Scholar

14 SchulenbergT.; BittermannD.; StarflingerJ.: Design Concept of the High Performance Light Water Reactor. Kerntechnik74 (2009) 2227Search in Google Scholar

15 Wagner, W.; Pruss, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Journal of Physical and Chemical Reference Data31 (2002) 38753510.1063/1.1461829Search in Google Scholar

16 Deiters, U. K.: ThermoC, http://thermoc.uni-koeln.de/index.html., 2006Search in Google Scholar

17 Imre, A. R.; Barna, I. F.; Ézsöl, G.; Házi, G.; Kraska, T.: Theoretical study of flashing and water hammer in supercritical water cycle during pressure drop. Nuclear Engineering and Design240 (2010) 1569157410.1016/j.nucengdes.2010.03.008Search in Google Scholar

18 Imre, A. R.; Házi, G.; Horváth, Á.; Maráczy, C.; Mazur, V.; Artemenko, S.: The effect of low-concentration inorganic materials on the behaviour of supercritical water. Nuclear Engineering and Design241 (2011) 29630010.1016/j.nucengdes.2010.11.011Search in Google Scholar

Received: 2011-09-12
Published Online: 2013-04-19
Published in Print: 2012-03-01

© 2012, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110209/html
Scroll to top button