Startseite Technik Development of a thermal-hydraulic analysis code for annular fuel assemblies
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Development of a thermal-hydraulic analysis code for annular fuel assemblies

  • A. K. Vishnoi , D. K. Chandraker und P. K. Vijayan
Veröffentlicht/Copyright: 19. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this work a detailed study of the annular fuel has been carried out. A thermal hydraulics code, ANUFAN (Annular Fuel Analysis), based on the bundle average method, capable of modeling both internally and externally cooled annular fuel pins is developed. Code predictions have been compared with calculations from Korea Atomic Energy Research Institute (KAERI) and MIT. Heat transfer fraction difference between ANUFAN and RELAP was found about 1.7%. Analysis of a 54 – fuel rod assembly is carried out with 36 and 45 numbers of annular fuel pins keeping the same channel size and bundle power as of the solid fuel assembly. Fuel pin maximum temperature of the annular fuel is found much less than the solid fuel. MCHFR value for annular fuel is found much higher compared to that of the solid fuel of 54 – fuel rod assembly. The full paper covers the details of the computer code, the analysis carried out and the results obtained.

Kurzfassung

In diesem Beitrag wird über eine Studie zu ringförmigen Brennelementanordnungen berichtet. Ein thermohydraulischer Rechencode, ANUFAN (Annular Fuel Analysis), kann sowohl intern wie auch extern gekühlte ringförmig angeordneter Brennstäbe modellieren. Die Code Vorhersagen wurden verglichen mit Rechenergebnisse des Korea Atomic Energy Research Institute (KAERI) und des MIT. Ein Unterschied der Wärmetransferanteile von etwa 1,7% zwischen ANUFAN and RELAP Rechencodes wurde gefunden. Die Analyse einer Anordnung von 54 Brennstäben wurde durchgeführt mit einer Anzahl von 36 und 45 Brennstäben mit der gleichen Kanalgröße und Bündelleistung wie die feste Brennstoffanordnung. Dabei wurde festgestellt, dass der MCHFR Wert der ringförmig angeordneten Brennelemente viel kleiner ist als der der festen Anordnung von 54 Brennstäben. Der Beitrag berichtet über Einzelheiten des Rechencodes, der durchgeführten Analyse sowie über die erhaltenen Ergebnisse.

References

1 Kazimi, M. S. et al.: High performance Fuel Design for Next generation PWRs. NERI proposal, 2001Suche in Google Scholar

2 Kim, H. T.; Hejzlar, P.; No, H. C.; Kazimi, M. S.: Performance of Internally and Externally Cooled Annular Fuel in a Loss of Coolant Accident. International Congress on Advanced Power Plants (ICAPP), Hollywood, Florida, June 2002Suche in Google Scholar

3 Yang, Y. S.; Bae, M. K.; Shin, C. H.; Chun, T. H.; Bang, J. G.; Song, K. W.: Conceptual Design of OPR-1000 Compatible Annular Fuel Assembly. ICAPP 2007 Technical Program (as of 27 April 2007)Suche in Google Scholar

4 Han, H. K.; Chang, S. H.: Development of a thermal-hydraulic analysis code for annular fuel assemblies. Nuclear Engineering and Design226 (2003) 26727510.1016/S0029-5493(03)00208-5Suche in Google Scholar

5 Zhao, J.; No, H. C.; Kazimi, M. S.: Mechanical analysis of high power internally cooled annular fuel. Nuclear Technology146 (2004) 164180Suche in Google Scholar

6 Groeneveld, D. C.; Leung, L. K. H.; Kirillov, P. L.; Bobkov, V. P.; Smogalev, I. P.; Vinogradov, V. N., Huang, X. C.; Royer, E.: The 1995 look-up table for critical heat flux in tubes. Nuclear Engineering and Design163 (1995) 12310.1016/0029-5493(95)01154-4Suche in Google Scholar

Received: 2011-06-23
Published Online: 2013-04-19
Published in Print: 2012-03-01

© 2012, Carl Hanser Verlag, München

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110185/html
Button zum nach oben scrollen