Home Technology Development of a thermal-hydraulic analysis code for annular fuel assemblies
Article
Licensed
Unlicensed Requires Authentication

Development of a thermal-hydraulic analysis code for annular fuel assemblies

  • A. K. Vishnoi , D. K. Chandraker and P. K. Vijayan
Published/Copyright: April 19, 2013
Become an author with De Gruyter Brill

Abstract

In this work a detailed study of the annular fuel has been carried out. A thermal hydraulics code, ANUFAN (Annular Fuel Analysis), based on the bundle average method, capable of modeling both internally and externally cooled annular fuel pins is developed. Code predictions have been compared with calculations from Korea Atomic Energy Research Institute (KAERI) and MIT. Heat transfer fraction difference between ANUFAN and RELAP was found about 1.7%. Analysis of a 54 – fuel rod assembly is carried out with 36 and 45 numbers of annular fuel pins keeping the same channel size and bundle power as of the solid fuel assembly. Fuel pin maximum temperature of the annular fuel is found much less than the solid fuel. MCHFR value for annular fuel is found much higher compared to that of the solid fuel of 54 – fuel rod assembly. The full paper covers the details of the computer code, the analysis carried out and the results obtained.

Kurzfassung

In diesem Beitrag wird über eine Studie zu ringförmigen Brennelementanordnungen berichtet. Ein thermohydraulischer Rechencode, ANUFAN (Annular Fuel Analysis), kann sowohl intern wie auch extern gekühlte ringförmig angeordneter Brennstäbe modellieren. Die Code Vorhersagen wurden verglichen mit Rechenergebnisse des Korea Atomic Energy Research Institute (KAERI) und des MIT. Ein Unterschied der Wärmetransferanteile von etwa 1,7% zwischen ANUFAN and RELAP Rechencodes wurde gefunden. Die Analyse einer Anordnung von 54 Brennstäben wurde durchgeführt mit einer Anzahl von 36 und 45 Brennstäben mit der gleichen Kanalgröße und Bündelleistung wie die feste Brennstoffanordnung. Dabei wurde festgestellt, dass der MCHFR Wert der ringförmig angeordneten Brennelemente viel kleiner ist als der der festen Anordnung von 54 Brennstäben. Der Beitrag berichtet über Einzelheiten des Rechencodes, der durchgeführten Analyse sowie über die erhaltenen Ergebnisse.

References

1 Kazimi, M. S. et al.: High performance Fuel Design for Next generation PWRs. NERI proposal, 2001Search in Google Scholar

2 Kim, H. T.; Hejzlar, P.; No, H. C.; Kazimi, M. S.: Performance of Internally and Externally Cooled Annular Fuel in a Loss of Coolant Accident. International Congress on Advanced Power Plants (ICAPP), Hollywood, Florida, June 2002Search in Google Scholar

3 Yang, Y. S.; Bae, M. K.; Shin, C. H.; Chun, T. H.; Bang, J. G.; Song, K. W.: Conceptual Design of OPR-1000 Compatible Annular Fuel Assembly. ICAPP 2007 Technical Program (as of 27 April 2007)Search in Google Scholar

4 Han, H. K.; Chang, S. H.: Development of a thermal-hydraulic analysis code for annular fuel assemblies. Nuclear Engineering and Design226 (2003) 26727510.1016/S0029-5493(03)00208-5Search in Google Scholar

5 Zhao, J.; No, H. C.; Kazimi, M. S.: Mechanical analysis of high power internally cooled annular fuel. Nuclear Technology146 (2004) 164180Search in Google Scholar

6 Groeneveld, D. C.; Leung, L. K. H.; Kirillov, P. L.; Bobkov, V. P.; Smogalev, I. P.; Vinogradov, V. N., Huang, X. C.; Royer, E.: The 1995 look-up table for critical heat flux in tubes. Nuclear Engineering and Design163 (1995) 12310.1016/0029-5493(95)01154-4Search in Google Scholar

Received: 2011-06-23
Published Online: 2013-04-19
Published in Print: 2012-03-01

© 2012, Carl Hanser Verlag, München

Downloaded on 13.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110185/html
Scroll to top button