Startseite Technik Thermal plume behaviour in the Kadra reservoir at Kaiga atomic power station – Part 2: studies for the case of four and six units in operation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermal plume behaviour in the Kadra reservoir at Kaiga atomic power station – Part 2: studies for the case of four and six units in operation

  • P. Goyal , P. K. Sharma , S. G. Markandeya und A. K. Ghosh
Veröffentlicht/Copyright: 19. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A computational model was developed earlier for 2 units of Nuclear Power Plants (NPPs) operational at Kaiga Atomic Power Station (KAPS) to understand the thermal plume behaviour in the Kadra reservoir wherein the hot water from the plant condensers is discharged. The model was successfully validated against the site data. The same model has now been extended for analyzing the thermal plume bahaviour in case of 4 NPP units as well as 6 NPP units operational at the same site. The present paper briefly describes details of the studies along with the results of earlier study to understand the overall behavior of thermal plume in Kadra reservoir.

Kurzfassung

Ein Computermodell wurde kürzlich entwickelt für 2 Einheiten des Kaiga Kernkraftwerks (KAPS) um das Verhalten der Wärmeableitungen im Kadra Reservoir zu verstehen, in dem das heiße Wasser aus den Kraftwerkskondensatoren entsorgt wird. Dieses Modell, das erfolgreich validiert wurde mit den Daten vor Ort aus früheren Studien, wurde jetzt erweitert zur Analyse des Verhaltens der Wärmeableitungen der 4 bzw. 6 in Betrieb befindlichen Einheiten des Kernkraftwerks. Der vorliegende Beitrag beschreibt Einzelheiten der Studie zusammen mit den Ergebnissen der voran gegangenen Untersuchung, um so das Verhalten der Wärmeableitungen im Kadra Reservoir insgesamt besser zu verstehen.


E-mail:

References

1 Harlemann, D. R. F..; Donald, R. F.; Stolzenbach, K. D.: Fluid Mechanics of Heat Disposal From Power Generation. Annual Review of Fluid Mechanics1972) 73210.1146/annurev.fl.04.010172.000255Suche in Google Scholar

2 Barry, R. E.: Computer Model for Thermal Plume, Journal of the Power Division98 (1972) 11713210.1061/JPWEAM.0000692Suche in Google Scholar

3 Öztürk, I.; Sarikaya, H. Z.; Aydin, A. F.; Demir, I.: A Simplified Model for Thermal Discharges. Water Sci. Tech.32 (1995) 183191Suche in Google Scholar

4 Hamrick, J. M.; Mills, W. B.: Analysis of Water Temperatures in Conowingo Pond as Influenced by the Peach Bottom Atomic Power Plant Thermal Discharge. Environ. Sci. Policy3 (2000) 19720910.1016/S1462-9011(00)00053-8Suche in Google Scholar

5 Akar, P. J.; Jirka, G. H.: CORMIX2: An Expert System for Hydrodynamic Mixing Zone Analysis of Conventional and Toxic Multiport Diffuser Discharges. U.S. Environmental Protection Agency, Athens, Ga., EPA/600/3-91/073 (1991)Suche in Google Scholar

6 Lee, J. H. W.; Cheung, V.: Generalized Lagrangian Model for Buoyant Jets in Current. J. Environ. Eng-ASCE116 (1990) 1085110510.1061/(ASCE)0733-9372(1990)116:6(1085)Suche in Google Scholar

7 Kim, D. G.; Seo, I. W.: Modeling the Mixing of Heated Water Discharged from a Submerged Multiport Diffuser. J. Hydro. Res.38 (2000) 25926910.1080/00221680009498325Suche in Google Scholar

8 Etemad-Shahidi, A.; Zoghi, M. J.; Saeedi, M.: An Alternative Data Driven Approach for Prediction of Thermal Discharge Initial Dilution using Tee Diffusers. Int. J. Environ. Sci. Tech.7 (2010) 2936Suche in Google Scholar

9 Lin, F.; Hecker, G. E.; Smith, B. T.; Hopping, P. N.: Innovative 3-D Numerical Simulation of Thermal Discharge From Browns Ferry Multiport Diffusers, ASME Conf. Proc. (2003) 101, DOI:10.1115/IJPGC2003-4010510.1115/IJPGC2003-40105Suche in Google Scholar

10 Suh, S. W.: A hybrid Near-Far Field Thermal discharge Model for Coastal areas. Marine Pollution Bulletin43 (2001) 22523310.1016/S0025-326X(01)00074-1Suche in Google Scholar

11 Swanson, C.; Subbayya, S.: Modeling of the Thermal Discharge from a Power Generating Facility into a Tidal-Like Hydropower Controlled Pool on the Connecticut River. Proceedings of the 10th International Conference on Estuarine and Coastal Modeling, November 5–7, Newport (2007)Suche in Google Scholar

12 Tang, H. S.; Keen, T. R.: Analytical Solutions for Open-Channel Temperature Response to Unsteady Thermal Discharge and Boundary Heating. Journal of Hydraulic Engineering135 (2009) 32710.1061/(ASCE)0733-9429(2009)135:4(327)Suche in Google Scholar

13 Wang, Q.; Dai, W.; Zhao, X.; Ding, F.; Li, S.; Zhao, Y.: Numerical Model of Thermal Discharge from Laibin Power Plant based on Mike21FM. Research of Environmental Sciences22 (2009) 332336Suche in Google Scholar

14 Sharma, P. K.; Goyal, P.; Markandeya, S. G.; Ghosh, A. K.: CFD Simulation of Thermal Discharge Behaviour in the Kadra Reservoir at the Kaiga Atomic Power Station-Part1: Validation for 2 Power Plant Units in Operation, Accepted in Kerntechnik 76 (2011) 111Suche in Google Scholar

Received: 2011-11-29
Published Online: 2013-04-19
Published in Print: 2012-03-01

© 2012, Carl Hanser Verlag, München

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110177/html
Button zum nach oben scrollen