Home Technology Computational fluid dynamics validation study of steam condensation on the containment walls
Article
Licensed
Unlicensed Requires Authentication

Computational fluid dynamics validation study of steam condensation on the containment walls

  • B. Gera , P. K. Sharma , R. K. Singh and K. K. Vaze
Published/Copyright: April 19, 2013
Become an author with De Gruyter Brill

Abstract

In water cooled power reactors, significant quantities of hydrogen could be produced following a severe accident (loss-of-coolant-accident along with non availability of emergency core cooling system). A sound understanding of dispersion, stratification and diffusion of released hydrogen during severe accidents is, therefore, of practical importance and use to better understand the possibility of ignition, combustion and explosion of such releases within the context of containment safety. The presence of air and steam in the containment atmosphere also affects the hydrogen distribution as steam condensation takes place at containment walls in presence of non condensable and bulk of the mixture diffuses towards wall. The application of general purpose CFD codes for the analysis of the hydrogen behaviour within NPP containments during severe accidents has been increasing over past few years. The commercial CFD codes generally do not have built-in steam condensations models. In the present work, the adaptation of a commercial multi-purpose code to this kind of problem is explained, i.e. by the implementation of models for steam condensation onto walls in presence of non-condensable gases. Steam condensation was modeled using the Uchida correlation, which was originally developed to be used for “lumped” (volume-averaged) modeling of steam condensation in the presence of non-condensable gases. The Uchida correlation is based on experiments on natural convection from relatively small vertical plates. The present methodology has been validated against experimental data from the TOSQAN and COPAIN experimental facilities.

Kurzfassung

In Wasser-gekühlten Leistungsreaktoren können signifikante Mengen Wasserstoff nach einem schweren Unfall (Kühlmittelverluststörfall und fehlendes Kernkühlungssystem) erzeugt werden. Deshalb ist ein fundiertes Verständnis von Dispersion, Stratifikation und Diffusion des während eines schweren Unfalls freigesetzten Wasserstoffs von praktischer Bedeutung, um die Möglichkeiten von Zündung, Verbrennung und Explosion solcher Freisetzungen im Rahmen der Containmentsicherheit besser zu verstehen. Das Vorhandensein eines Luft-Dampf-Gemischs in der Containmentatmosphäre beeinflusst die Wasserstoffverteilung, da der Dampf an den Containmentwänden kondensiert und der Großteil des Gemischs sich zu den Containmentwänden hin ausbreitet. Vermehrt werden in letzten Jahren CFD Codes zur Analyse des Wasserstoffverhaltens innerhalb des Containments verwendet. Die kommerziellen CFD Codes haben im allgemeinen keine integrierten Dampfkondensationsmodelle. In der vorliegenden Arbeit wird über die Anpassung eines kommerziellen Mehrzweckcodes an diese Art Probleme durch die Implementierung von Dampfkondensationsmodellen berichtet. Dazu wurde die Uchida-Korrelation verwendet, die ursprünglich für volumengemittelte Modelle der Dampfkondensation entwickelt worden war. Die jetzige Methode wurde validiert mit Hilfe experimenteller Ergebnisse aus den TOSQAN und COPAIN Testanlagen.


E-mail:

References

1 Royl, P.; Rochholz, H.; Breitung, W.; Travis, J. R.; Necker, G.: Analysis of steam and hydrogen distributions with PAR mitigation in NPP containments. Nuclear Engineering and Design202 (2000) 23124810.1016/S0029-5493(00)00332-0Search in Google Scholar

2 Houkema, M.; Siccama, N. B.; Nijeholt, J. A. L.; Komen, E. M. J.: Validation of the CFX4 CFD code for containment thermal-hydraulics. Nuclear Engineering and Design238 (2008) 59059910.1016/j.nucengdes.2007.02.033Search in Google Scholar

3 Babic, M.; Kljenak, I.; Mavko, B.: Prediction of light gas distribution in experimental containment facilities using the CFX4 code. Nuclear Engineering and Design238 (2008) 53855010.1016/j.nucengdes.2007.02.039Search in Google Scholar

4 Kljenak, I.; Babic, M.; Mavko, B.; BajsicI.: Modeling of containment atmosphere mixing and stratification experiment using a CFD approach. Nuclear Engineering and Design236 (2006) 1682169210.1016/j.nucengdes.2006.04.025Search in Google Scholar

5 Kljenak, I.; Bajsic, I.; Babic, M.: Modelling of steam condensation on the walls of a large enclosure using a Computational Fluid Dynamics code. Proceedings of the ASME-ZSIS International Thermal Science Seminar II, Slovenia, June 13–16, 200410.1615/ICHMT.2004.IntThermSciSemin.840Search in Google Scholar

6 Uchida, H.; Oyama, A.; Togo, Y.: Evaluation of post-incident cooling systems of LWRs. 13th International Conference on Peaceful Uses of Atomic Energy, International Atomic Energy Agency, Vienna, Austria, 1965, 93102Search in Google Scholar

7 Valdepenas, J. M. M.; Jimenez, M. A.; Fuertes, F. M.; Fernandez, J. A.: Improvements in a CFD code for analysis of hydrogen behaviour within containments. Nuclear Engineering and Design237 (2007) 62764710.1016/j.nucengdes.2006.09.002Search in Google Scholar

8 Terasaka, H.; Makita, A.: Numerical analysis of the PHEBUS containment thermal hydraulics. Journal of Nuclear Science and Technology34 (1997) 66667810.1080/18811248.1997.9733725Search in Google Scholar

9 Mimouni, S.; Foissac, A.; Lavieville, J.: CFD modelling of wall steam condensation by a two-phase flow approach. Nuclear Engineering and Design241 (2011) 44454455 doi:10.1016/j.nucengdes.2010.09.02010.1016/j.nucengdes.2010.09.020Search in Google Scholar

10 Kudriakov, S.; Dabbene, F.; Studer, E.; Beccantini, A.; Magnauda, J. P.; Paillere, H.; Bentaib, A.; Bleyer, A.; Malet, J.; Porcheron, E.; Caroli, C.: The TONUS CFD code for hydrogen risk analysis: Physical models, numerical schemes and validation matrix. Nuclear Engineering and Design238 (2008) 55156510.1016/j.nucengdes.2007.02.048Search in Google Scholar

11 CFD-ACE+ V2009.2, User Manual, ESI CFD Inc., Huntsville, AL 35806Search in Google Scholar

12 Cheng, X.; Bazin, P.; Cornet, P.; Hittner, D.; Jackson, J. D.; Jimenez, J. L.; NaviglioA.; Oriolo, F.; Petzold, H.: Experimental data base for containment thermal hydraulic analysis. Nuclear Engineering and Design204 (2001) 26728410.1016/S0029-5493(00)00311-3Search in Google Scholar

13 Brun, P.; Cornet, P.; Malet, J.; Menet, B.; Porcheron, E.; Vendel, J.; Caron Charles, M.; Quilico, J. J.; Paillere, H.; Studer, E.: Specification of international standard problem on containment thermal-hydraulics ISP- 47. Step 1: TOSQAN-MISTRA, 2002, Saclay, FranceSearch in Google Scholar

14 Cornet, P.; Malet, J.; Porcheron, E.: TOSQAN experimental results of the air-steam phase, OECD International Standard Problem on Containment Thermal-Hydraulics ISP-47, 2002, Saclay, FranceSearch in Google Scholar

Received: 2011-04-15
Published Online: 2013-04-19
Published in Print: 2012-03-01

© 2012, Carl Hanser Verlag, München

Downloaded on 11.12.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.110175/pdf
Scroll to top button