Novel dose calculation and characterization of 32P intravascular brachytherapy stent source
-
M. Sadeghi
Abstract
Derived from AAPM task group No. 60/149 protocol, applicable in treatment planning In this study, the two-dimensional dose distributions in water for a 32P intravascular brachytherapy stent have been calculated. The pure beta emitter source 32P which has been coated on Palmaz-Schatz stent is discussed. The dosimetric parameters required by the AAPM TG-60/149 formalism are discussed and calculated. Version 5 of the (MCNP) Monte Carlo radiation transport code was used to calculate the dosimetry parameters around the source. The Monte Carlo calculated dose rate at the reference point is found to be 2.8 Gy/μCi. Also in this study, the geometry function, G(r,θ), radial dose function, g(r), and the anisotropy function, F(r,θ), have been calculated at distances from 1.8 to 9 mm. The results of these calculations have been compared with other published calculated and measured values for an actual same source. High dose variants were visible near the 32P stent surface, but these values decreased with depth in water rapidly. There is an acceptable agreement between the calculated data in this study and other published data for the same source, which validate our simulations method.
Kurzfassung
In der vorliegenden Studie wurden die zweidimensionalen Dosisverteilungen in Wasser für die intravaskulären Brachytherapie mit 32P berechnet. Als Strahlenquelle werden Palmaz-Schatz Stents mit dem reinen Betaemitter 32P beschichtet verwendet. Die dosimetrischen Parameter, die nach dem AAPM TG-60/149 Formalismus erforderlich sind werden diskutiert und berechnet. Version 5 des (MCNP) Monte Carlo Strahlungstransportcodes zur Berechnung der dosimetrischen Parameter um die Quelle herum verwendet. Die so berechnete Dosisleistung am Referenzpunkt liegt bei 2,8 Gy/μCi. Ebenfalls in dieser Studie wurde die Geometriefunktion G(r,θ), die radiale Dosisfunktion g(r) und die Anisotropiefunktion F(r, θ) berechnet für Abstände von 1,8 bis 9 mm. Die Ergebnisse dieser Berechnungen wurden verglichen mit anderen veröffentlichten Berechnungen und mit gemessenen Werten für die gleiche Quelle. Große Dosisschwankungen zeigten sich nahe der 32P Stentoberfläche, nahmen aber mit der Tiefe in Wasser sehr schnell ab. Die Übereinstimmung zwischen den in dieser Studie berechneten Werten und anderen veröffentlichten Daten für die gleiche Quelle ist akzeptabel, wodurch die gewählte Simulationsmethode validiert wird.
References
1 Weintraub, W. S.; Mauldin, P. D.; Becker, E.; Kosinski, A. S.; King III, S. B.: A comparison of the costs of and quality of life after coronary angioplasty or coronary surgery for multivessel coronary artery disease. Results from the Emory angioplasty versus surgery trial. Circulation92 (1995) 2831–184010.1161/01.CIR.92.10.2831Suche in Google Scholar
2 Serruys, P. W.; et al.: A comparison of 0balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. N. Engl. J. Med.331 (1994) 489–49510.1056/NEJM199408253310801Suche in Google Scholar
3 Fischman, D. L.; et al.: A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N. Engl. J. Med.331 (1994) 496–50110.1056/NEJM199408253310802Suche in Google Scholar
4 Waksman, R.: Progress in clinical trials for coronary arterial restenosis using beta radiation sources. Cardiovasc. Radiat. Med.1 (1999) 220–22610.1016/S1522-1865(99)00027-XSuche in Google Scholar
5 Patel, N. S.; et al.: Treatment planning dosimetric parameters for a 90Y coil source used in intravascular brachytherapy. Cardio. Rad. Med.2 (2001) 83–9210.1016/S1522-1865(00)00079-2Suche in Google Scholar
6 Nath, R.; et al.: Intravascular brachytherapy physics: report of the AAPM Radiation Therapy Committee Task Group No. 60. Med. Phys.26 (1999) 119–15210.1118/1.598496Suche in Google Scholar PubMed
7 Carter, A.; Lair, J. R.: Experimental results with endovascular irradiation via a radioactive stent. Int. J. Radiat. Oncol. Biol. Phys.36 (1996) 796–803Suche in Google Scholar
8 Chiu-Tsao, S. T.; Schaart, D. R.; Soares, G. C.; Ravinder, N.: Dose calculation formalisms and consensus dosimetry parameters for intravascular brachytherapy dosimetry: Recommendations of the AAPM Therapy Physics Committee Task Group No. 149. Med. Phys.34 (2007) 4126–415710.1118/1.2767184Suche in Google Scholar PubMed
9 Browne, E.; Firestone, R. B.; Shirley, V. S.: Table of Radioactive Isotopes. Wiley, New York, 1986Suche in Google Scholar
10 Uniform Tubes-Europe. http://www.uniformtubes.co.uk/Suche in Google Scholar
11 Monte Carlo Team: MCNP-A General Monte Carlo N-Particle Transport Code-Version 5, Los Alamos National Laboratory, http://mcnp-green.lanl.gov/index.html (29-Jan-2008)Suche in Google Scholar
12 Rivard, M. J.; et al.: Update of AAPM task group no. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med. Phys.31 (2004) 633–67410.1118/1.1646040Suche in Google Scholar PubMed
13 Sadeghi, M.; Raisali, G. H.; Hosseini, S. H.; Shahvar, A.: Monte Carlo calculations and experimental measurements of dosimetric parameters of the IRA-103Pd brachytherapy source. Med. Phys.35 (2008) 1288–129410.1118/1.2870229Suche in Google Scholar PubMed
14 Raisali, G. H.; Sadeghi, M.; Ataeinia, V.; Ghasemi Ghoncheh Nazi, M.: Determination of Dosimetric Parameters of the Second Model of 103Pd Seed Manufactured at Agricultural, Medical and Industrial Research School IR. Med. Phys.. 5 (2008) 9–20Suche in Google Scholar
15 Williamson, J. F.: Monte Carlo modeling of the transverse-axis dose distribution of the Model 200 103Pd interstitial brachytherapy source. Med. Phys.27 (2000) 643–65410.1118/1.598924Suche in Google Scholar PubMed
16 Prestwich, W. V.; Kennett, T. J.; Kus, F. W.: The dose distribution produced by a 32P-coated stent. Med. Phys.22 (1995) 313–2010.1118/1.597455Suche in Google Scholar
17 Duggan, D. M.; Coffey II, C. W.; Levit, S.: Dose distribution for a 32P-impregnated coronary stent: comparison of theoretical calculations and measurements. Int. J. Radiat. Oncol. Biol. Phys.40 (1998) 713–72010.1016/S0360-3016(97)00812-2Suche in Google Scholar
18 Alexander, N. L.; Eigler, L. E.; Litvak, F.: Characterization of a positron emitting 48V nitinol stent for intracoronary brachytherapy. Med. Phys.25 (1998) 20–2810.1118/1.598164Suche in Google Scholar PubMed
19 Mourtada, F.; Soares, C. G.; Horton, J. L.: A segmented 32P source Monte Carlo model to derive AAPM TG-60 dosimetric parameters used for intravascular brachytherapy. Med. Phys.31 (2004) 602–60810.1118/1.1646651Suche in Google Scholar PubMed
20 Franquiz, J. M.; Chigurupati, S.; Kandagatla, K.: Beta voxel S values for internal emitter dosimetry. Med. Phys.30 (2003) 1030–103210.1118/1.1573204Suche in Google Scholar PubMed
21 Guimarães, C. C.; Maurício, M.; Sene, F. F.; Martinelli, J. R.: Dose-rate distribution of 32P-glass microspheres for intra-arterial brachytherapy. Med. Phys.37 (2010) 532–53910.1118/1.3284210Suche in Google Scholar PubMed
22 Bohm, T. D.; Mourtada, F. A.; Das, R. K.: Dose rate table for a P-32 intravascular brachytherapy source from Monte Carlo calculations. Med. Phys.28 (2001) 1770–177510.1118/1.1384459Suche in Google Scholar PubMed
© 2011, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Overview of safety improvement during RBMK-1500 reactor core lifetime upgrading
- Strategy, main stages and progress of the Ignalina Nuclear Power Plant decommissioning
- Environmental safety aspects of the new solid radioactive waste management and storage facility at the Ignalina Nuclear Power Plant
- Preliminary evaluation of effect of Engineered Safety Features on source term for AHWR containment
- Burn up extension in a PBMR-400 full core using weapon grade plutonium fuel mixed with thorium
- A study on the damage of potential first wall materials in a nuclear fusion reactor using plutonium bearing salt
- An analytical benchmark of MYRRHA ADS in cylindrical geometry
- Dosimetric characteristics of three new design 125I brachytherapy sources
- Determination of 89Zr production parameters via different reactions using ALICE and TALYS codes
- Novel dose calculation and characterization of 32P intravascular brachytherapy stent source
- Cyclotron production of 85Sr by proton irradiation of natRb
- Lessons learnt from PSA for new and advanced reactors in Russia
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Overview of safety improvement during RBMK-1500 reactor core lifetime upgrading
- Strategy, main stages and progress of the Ignalina Nuclear Power Plant decommissioning
- Environmental safety aspects of the new solid radioactive waste management and storage facility at the Ignalina Nuclear Power Plant
- Preliminary evaluation of effect of Engineered Safety Features on source term for AHWR containment
- Burn up extension in a PBMR-400 full core using weapon grade plutonium fuel mixed with thorium
- A study on the damage of potential first wall materials in a nuclear fusion reactor using plutonium bearing salt
- An analytical benchmark of MYRRHA ADS in cylindrical geometry
- Dosimetric characteristics of three new design 125I brachytherapy sources
- Determination of 89Zr production parameters via different reactions using ALICE and TALYS codes
- Novel dose calculation and characterization of 32P intravascular brachytherapy stent source
- Cyclotron production of 85Sr by proton irradiation of natRb
- Lessons learnt from PSA for new and advanced reactors in Russia