Home Technology Cyclotron production of 85Sr by proton irradiation of natRb
Article
Licensed
Unlicensed Requires Authentication

Cyclotron production of 85Sr by proton irradiation of natRb

  • M. Sadeghi , Z. Alipoor and G. Aslani
Published/Copyright: April 19, 2013
Become an author with De Gruyter Brill

Abstract

Excitation functions for protons induced on 85/natRb targets that lead to the production of 85Sr radioisotopes using TALYS 1.0 and ALICE/ASH codes were calculated. Rubidium chloride deposition on copper substrate was carried out via sedimentation method in order to produce Strontium-85. 520 mg RbCl, 208 mg ethyl cellulose (EC) and 4 mL acetone were used to prepare a layer of enriched rubidium chloride of 11.69 cm2 area and 62.2 mg · cm−2 thickness. The deposited target was irradiated at 20 A current and 15 MeV proton beam for 10 h and no degradation was observed. The 85Sr production yield was 1.4 MBq/mA · h. The target material was dissolved by 50 mL acetone. Dissolved Strontium-85 was separated from rubidium by Chelex 100 ion exchanger.

Kurzfassung

Die Anregungsfunktionen für ein mit Protonen bestrahltes 85/natRb Target zur Erzeugung von 85Sr wurden berechnet mit Hilfe der Codes TALYS 1.0 und ALICE/ASH. Die Ablagerung von Rubidiumchlorid auf Kupfersubstrat zur Erzeugung von Strontium-85 wurde mit der Sedimentationsmethode durchgeführt. 520 mg RbCl, 208 mg Äthylzellulose (EC) und 4 mL Azeton wurden für die Aufbereitung einer Schicht angereichertem Rubidiumchlorid von 11,69 cm2 Fläche and 62,2 mg · cm−2 Dicke verwendet. Das Target wurde mit einem 15 MeV Protonenstrahl für 10 h bei 20 A bestrahlt. Es wurde keine Degradation beobachtet. Die 85Sr Ausbeute lag bei 1.4 MBq/mA · h. Das Targetmaterial wurde mit 50 mL Azeton gelöst. Gelöstes Strontium-85 wurde von Rubidium abgetrennt mit Hilfe eines Chelex 100 Ionentauschers.


Corresponding author E-mail:

References

1 Firestone, R. B.: Table of isotopes. Version 1.0, Wiely interscience (1996)Search in Google Scholar

2 Uddin, M. S.; Baba, M.; Hagiwara, M.; Tarkanyi, F.; Ditroi, F.: Experimental studies on excitation function of the proton-induced activation reactions on yttrium, Appl. Radiat. Isot.63 (2005) 36710.1016/j.apradiso.2005.04.006Search in Google Scholar

3 Giaminaril, F.; Mognetti, T.; Blondet, C.; Desuzinges, C.; Chauvot, P.: Bone pain palliation with 85Sr therapy, J. Nucl. Med.. 40 (1999) 585Search in Google Scholar

4 Hamaoka, T.; Mardewell, E.; Podoloffa, A.; Hortobagyi, N.; Ueno, T.: Bone imaging in metastatic breast cancer, J. Clinical Oncology, 22 (2004) 294210.1200/JCO.2004.08.181Search in Google Scholar

5 Ronai, P.; Winchell, H. S.; Anger, H. O.: Skeletal survey for metastatic tumors of bone using 18F and 85Sr with scintillation camera and whole-body scanner, J. Nucl. Med.. 9 (1968) 517Search in Google Scholar

6 Sakamoto, K.; Dohniwa, M.; Okada, K.: Excitation function for (p, xn) and (p, pxn) reactions on natural 79+81Br, 85+87Rb, 127I and 123Cs up to Ep = 52 MeV, Appl. Radiat. Isot.36 (1985) 48110.1016/0020-708X(85)90213-3Search in Google Scholar

7 Ido, T.; Hermanne, A.; Ditroi, F.; Szucs, Z.; Mahunka, I.; Tarkanyi, F.: Excitation function of proton induced nuclear reactions on natRb from 30 to 70 MeV. Implication for the production of 82Sr and other medically important Rb and Sr radioisotopes, Nucl. Instrum. Meth. Phys. Res. B194 (2002) 36910.1016/S0168-583X(02)00958-8Search in Google Scholar

8 Buthelezi, E. Z.; Nortier, F. M.; Schroder, I. W.: Excitation functions for the production of 82Sr by proton bombardment of natRb at energies up to 100 MeV. Appl. Radiat. Isot.64 (2006) 91510.1016/j.apradiso.2006.03.009Search in Google Scholar

9 Levkovskij, V. N.: Activation cross section nuclides of average masses (A = 40–100) by proton and alpha-particles with average energies (E = 10–50) Act. Cs. By Proton and Alpha, Moscow (1991)Search in Google Scholar

10 Kastleiner, S.; Qaim, S. M.; Nortier, F. M.; Blessing, G.; Coenen, H. H.: Excitation functions of 85Rb(p, xn)85m, g,83,82,81Sr reactions up to 100 MeV: integral tests of cross section data, comparison of production routes of 83Sr and thick target yield of 82Sr. Appl. Radiat. Isot.. 56 (2002) 68510.1016/S0969-8043(01)00267-6Search in Google Scholar

11 Sadeghi, M.; Enferadi, M.; Nadi, H.; Tenreiro, C.: A novel method for the cyclotron production no-carrier-added 93mMo for nuclear medicine. J. Radioanal. Nucl. Chem.286 (2010) 14110.1007/s10967-010-0622-5Search in Google Scholar

12 Sadeghi, M.; Enferadi, M.; Nadi, H.: Study of the cyclotron production of 172Lu: an excellent radiotracer. J. Radioanal. Nucl. Chem.286 (2010) 25926310.1007/s10967-010-0649-7Search in Google Scholar

13 Bilewicz, A.; Bartos, B.; Misiak, R.; Petelenz, B.: Separation of 82Sr from rubidium target for preparation of 82Sr/82Rb generator. J. Radioanal. Nucl. Chem.268 (2006) 48510.1007/s10967-006-0195-5Search in Google Scholar

14 Banerjee, S.; Mukhopadhyay, K.; Mukhopadhyay, B.; Lahiri, S.: Extraction separation of 86Rb from 85Sr in trace level with 18-crown-6 in nitrobenzene. J. Radioanal. Nucl. Chem.252 (2002) 15710.1023/A:1015264510660Search in Google Scholar

15 Aardaneh, K.; Walt, T.; Davids, C.: Radiochemical separation of 82Sr and the preparation of a sterile 82Sr/82Rb generator column. J. Radioanal. Nucl. Chem.270 (2006) 38510.1007/s10967-006-0361-9Search in Google Scholar

16 Qaim, S. M.; Steyn, G. F.; Spahn, I.; Spellerberg, S.; Walt, T. N.; Coenen, H. H.: Yield and purity of 82Sr produced via he natRb(p, xn)82Sr process. Appl. Radiat. Isot.. 65 (2007) 24710.1016/j.apradiso.2006.08.001Search in Google Scholar

17 Broeders, C. H. M. A.; Konobeyev, Yu.; Korovin, Yu. A.; Lunev, V. P.; Blann, M.: ALICE/ASH – Pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reaction at intermediate energies, FZK 7183, (2006), http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdfSearch in Google Scholar

18 Koning, A. J.; Hilaire, S.; Duijvestijn, M.: TALYS 1.0. Nucl. Res. Consul. Group. (2007)10.1051/ndata:07767Search in Google Scholar

19 Konobeyev, A. Yu.; Korovin, Yu. A.; Pereslavtsev, P. E.: Code ALICE/ASH for Calculation of Excitation Functions, Energy and Angular Distributions of Emitted Particles in Nuclear Reactions, Report of the Obninsk Institute of Nuclear Power Engineering, (1997)Search in Google Scholar

20 Blann, M.: ALICE-91: Statistical Model Code System with Fission Competition, RSIC Code Package PSR-146 (1991)Search in Google Scholar

21 Sato, K.; Iwamoto, A.; Harada, K.: Pre-equilibrium emission of light composite particles in the framework of the exciton model. Phys. Rev. C28 (1983) 152710.1103/PhysRevC.28.1527Search in Google Scholar

22 Koning, A. J.; Delaroche, J. P.: Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A713 (2003) 23110.1016/S0375-9474(02)01321-0Search in Google Scholar

23 Watanabe, S.: High energy scattering of deuterons by complex nuclei. Nucl. Phys.8 (1958) 48410.1016/0029-5582(58)90180-9Search in Google Scholar

24 Belgya, T.; Bersillon, O.; Capote, R.; Fukahori, T.; Zhigang, G.; Goriely, S.; Herman, M.; Ignatyuk, A. V.; Kailas, S.; Koning, A.: Handbook for calculations of nuclear reaction data, Reference Input Parameter Library-2, Tech. Rep. IAEA-TECDOC-1506. IAEA, Vienna, Austria 1–159 (2006)Search in Google Scholar

25 Molduer, P. A.: Statistics and the average cross section. Nucl. Phys. A344 (1980) 18510.1016/0375-9474(80)90671-5Search in Google Scholar

26 Koning, A. J.; Duijvestijn, M. C.: A global pre-equilibrium analysis from 7 to 200 MeV based on the optical model potential. Nuclear Physics A744 (2004) 157610.1016/j.nuclphysa.2004.08.013Search in Google Scholar

27 Kalbach, C.: Pre-equilibrium reactions with complex particle channels. Phys. Rev. C71 (2005) 03460610.1103/PhysRevC.71.034606Search in Google Scholar

28 Dilg, W.; Schantl, W.; Vonach, H.; Uhl, M.: Level density parameters for the back-shifted Fermi gas model in the mass range 40 < A < 250. Phys. A217 (1973) 269Search in Google Scholar

29 Sadeghi, M.; Kakavand, T.; Alipoor, Z.: 85Sr production via proton induced on various targets using TALYS 1.0 code. Modern Physics Letters A. 18 (2010) 154110.1142/S0217732310032615Search in Google Scholar

30 Kakavand, T.; Sadeghi, M.; Alipoor, Z.: Nuclear model calculation on charged particle induced reactions to produce 85Sr for diagnostic and endotherapy. Kerntechnik75 (2010) 263Search in Google Scholar

Received: 2011-02-14
Published Online: 2013-04-19
Published in Print: 2011-11-01

© 2011, Carl Hanser Verlag, München

Downloaded on 14.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/124.110167/html
Scroll to top button