Startseite Technik Dosimetric characteristics of three new design 125I brachytherapy sources
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Dosimetric characteristics of three new design 125I brachytherapy sources

  • Z. Khanmohammadi und M. Sadeghi
Veröffentlicht/Copyright: 19. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

For roughly 25 years, 125I sources have been used in the treatment of various malignant diseases such as prostate cancer. Three new brachytherapy sources, IR01-125I, IR02-125I and IR03-125I, have been developed and are designed for permanent implant application. The Monte Carlo radiation transport code version MCNP 5 was used to calculate the dosimetry parameters around the sources in accordance with the updated report of the American Association of Physicists in Medicine (AAPM), Task Group No. 43. For each source, the dose rate constant Λ, the radial dose function gL(r), and the anisotropy function F(r, θ), were obtained. The results indicated a dose rate constant of 0.932 ± 0.01, 0.934 ± 0.01 and 0.939 ± 0.01 Gy h−1 U−1 for the IR01-125I, IR02-125I and IR03-125I sources respectively. With the goal of determining an optimal design for a 125I source, each seed's parameters were compared with other seeds. In this study, the optimal source IR03-125I provides the most isotropic dose distribution in water. Finally, the results for optimal source were compared with published results for those of other commercial sources.

Kurzfassung

Seit nahezu 25 Jahren werden 125I Quellen bei der Behandlung von verschiedenen malignen Erkrankungen wie z.B. Prostatakrebs verwendet. Drei neue Brachytherapiequellen IR01-125I, IR02-125I, und IR03-125I wurden für die Anwendung als dauerhaftes Implantat entwickelt. Der Monte Carlo Strahlungstransport Code Version MCNP5 wurde für die Simulation der dosimetrischen Parameter der Quellen verwendet in Übereinstimmung mit dem Bericht der American Association of Physics in Medicine (AAPM), Task Group No. 43. Für jede Quelle wurde die Dosisleistungskonstante Λ, die radial Dosisfunktion gL(r), und die anisotropische Funktion F(r, θ) bestimmt. Die Ergebnisse zeigen eine Dosisleistungskonstante von 0,932 ± 0,01, 0,934 ± 0,01 und 0,939 ± 0,01 Gy h−1 U−1 für IR01-125I, IR02-125I und IR03-125I. Mit dem Ziel, ein optimales Design für eine 125I Quelle zu bestimmen, wurden die Parameter eines Seeds mit denen anderer Seeds verglichen. In dieser Studie wird gezeigt, dass IR03-125I die beste Quelle in Bezug auf die isotropische Dosisverteilung in Wasser ist. Abschließend wurden alle Ergebnisse mit den publizierten Resultaten für andere Quellenarten und deren Hersteller verglichen.


E-mail:

References

1 Holm, H.; Juul, N.; Pedersen, J. F.; Hansen, H.; Stroyer, I.: Transperineal 125iodine seed implantation in prostatic cancer guided by transrectal ultrasonography. J. Urol.130 (1983) 283Suche in Google Scholar

2 International Commission on Radiological Protection. Radiation safety aspects of brachytherapy for prostate cancer using permanently implanted sources. A report of ICRP Publication 98. Ann ICRP35 (2005) 310.1016/j.icrp.2006.02.001Suche in Google Scholar

3 Wallner, K.; Merrick, G.; True, L.; Sutlief, S.; Cavanagh, W.; Butler, W.: 125I versus 103Pd for low-risk prostate cancer: preliminary PSA outcomes from a prospective randomized multicenter trial. Int J Radiat. Oncol. Biol. Phys.57 (2003) 129710.1016/S0360-3016(03)01448-2Suche in Google Scholar

4 Blasko, J. C; Wallner, K.; Grimm, P. D.; Ragde, H.: Prostate specific antigen based disease control following ultrasound guided 125iodine implantation for stage T1/T2 prostatic carcinoma. J. Urol.154 (1995) 109610.1016/S0022-5347(01)66985-4Suche in Google Scholar

5 Rivard, M. J.; Coursey, B. M.; DeWerd, L. A.; Hanson, W. F.; Huq, M. S.; Ibbott, G. S.; Mitch, M. G.; Nath, R.; Williamson, J. F.: Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med. Phys.31 (2004) 63310.1118/1.1646040Suche in Google Scholar PubMed

6 Williamson, J.; Coursey, B. M.; DeWerd, L. A.; Hanson, W. F.; Nath, R.: Dosimetric prerequisites for routine clinical use of new low energy photon interstitial brachytherapy sources. Recommendations of the American Association of Physicists in Medicine Radiation Therapy Committee. Ad Hoc Subcommittee of the Radiation Therapy Committee. Med. Phys.25 (1998) 226910.1118/1.598456Suche in Google Scholar PubMed

7 Sadeghi, M.; Raisali, G.; Hosseini, S. H.; Shavar, A.: Monte Carlo calculations and experimental measurements of dosimetric parameters of the IRA-103Pd brachytherapy source. Med. Phys.35 (2008) 128810.1118/1.2870229Suche in Google Scholar PubMed

8 Sadeghi, M.; Hosseini, S. H.: Study of the IsoAid ADVANTAGETM 125I brachytherapy source dosimetric parameters using Monte Carlo simulation. Appl. Radiat. Isot.68 (2010) 21110.1016/j.apradiso.2009.08.007Suche in Google Scholar PubMed

9 Sadeghi, M.; Enferadi, M.; Shirazi, A.: External and internal radiation therapy: past and future direction. J. Can. Res. Ther.6 (2010) 24510.4103/0973-1482.73324Suche in Google Scholar PubMed

10 Monte Carlo Team, MCNP-A General Monte Carlo N-Particle Transport Code-Version 5, Los Alamos National Laboratory, (2008). http://mcnp-green.lanl.gov/index.htmlSuche in Google Scholar

11 Hubbell, J. H.; Seltzer, S. M.: Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients (version 1.4)http://physics.nist.gov/xaamdi (2008).Suche in Google Scholar

12 Nath, R.; Anderson, L. L.; Luxton, G.; Weaver, K. A.; Williamson, J. F.; Meigooni, A. S.: Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. American Association of Physicists in Medicine. Med. Phys.22 (1995) 20910.1118/1.597458Suche in Google Scholar PubMed

13 Melhus, C. S.; Rivard, M. J.: COMS eye plaque brachytherapy dosimetry simulations for 103Pd, 125I, and 131Cs. Med. Phys.. 35 (2008) 336410.1118/1.2940604Suche in Google Scholar PubMed

14 Solberg, T. D.; DeMarco, J. J.; Hugo, G.; Wallace, R. E.: Dosimetric parameters of three new solid core I-125 brachytherapy sources. J Appl. Clin. Med. Phys.3 (2003) 11910.1120/1.1464086Suche in Google Scholar

15 Wallace, R. E.: Model 3 500 125I brachytherapy source dosimetric characterization. Appl. Radiat. Isot.56 (2002) 58110.1016/S0969-8043(01)00254-8Suche in Google Scholar

16 Popescu, C. C.; Wise, J.; Sowards, K.; Meigooni, A. S.; Ibbott, G. S.: Dosimetric characteristics of the Pharma Seed model BT-125-I source. Med. Phys.27 (2000) 217410.1118/1.1289897Suche in Google Scholar PubMed

17 Saidi, P.; Sadeghi.M.; Shirazi, A.; Tenreiro, C.: Dosimetric parameters of the new design 103Pd brachytherapy source based on Monte Carlo study. Physica Medica (2011) In press doi: 10.1016/j.ejmp.2010.12.00510.1016/j.ejmp.2010.12.005Suche in Google Scholar PubMed

18 Rivard, M. J.: Monte Carlo calculations of AAPM Task Group Report No. 43 dosimetry parameters for the MED3631-A/M125I source. Med. Phys.28 (2001) 629.10.1118/1.1355306Suche in Google Scholar PubMed

19 Saidi, P.; Sadeghi, M.; Shirazi, A.; Tenreiro, C.: Monte Carlo calculation of dosimetry parameters for the IR08-103Pd brachytherapy source. Med. Phys.37 (2010) 250910.1118/1.3416922Suche in Google Scholar PubMed

20 Dolan, J.; Lia, Z.; Williamson, J. F.: Monte Carlo and experimental dosimetry of an 1251 brachytherapy seed. Med Phys.33 (2006) 467510.1118/1.2388158Suche in Google Scholar PubMed

Received: 2011-01-23
Published Online: 2013-04-19
Published in Print: 2011-11-01

© 2011, Carl Hanser Verlag, München

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110162/html
Button zum nach oben scrollen