A study on the damage of potential first wall materials in a nuclear fusion reactor using plutonium bearing salt
-
M. Übeyli
Abstract
Selection of first wall material for fusion reactors is very crucial when taking into account of fusion blanket design and operation cost. A realistic way to extend the working period of first wall structure is to use a protective flowing liquid wall between fusion plasma and first wall. HYLIFE-II, one of the important fusion reactor design concepts, uses such a liquid wall. In the current article, the radiation damage on the first wall of HYLIFE-II fusion reactor was investigated for various candidate materials. In the liquid wall of the reactor, a molten salt containing weapon grade (WG) plutonium isotopes was used. The numerical results indicated that a refractory alloy of W-5Re was found to have the lowest damage values. In addition, the use of WG plutonium isotopes did not have a negative effect on the radiation damage characteristics of the investigated structural materials.
Kurzfassung
Die Wahl des Materials für die innere Wand eines Fusionsreaktors ist entscheidend wenn man das Blanket Design und die Betriebskosten betrachtet. Ein realistischer Weg zur Verlängerung der Lebensdauer der Struktur der inneren Wand ist die Verwendung einer schützenden Flüssigkeitswand zwischen dem Fusionsplasma und der inneren Wand. HYLIFE-II, eines der wichtigsten Designkonzepte für Fusionsreaktoren verwendet eine solche flüssige Wand. In der vorliegenden Arbeit wurden Strahlungsschäden der inneren Wand eines HYLIFE-II Fusionsreaktors bei verschiedenen Materialien untersucht. In der flüssigen Wand des Reaktors wurde ein geschmolzenes Salz verwendet, das waffenfähiges (WG) Plutonium enthält. Die numerischen Ergebnisse zeigen, dass eine hochschmelzende Legierung aus W-5Re die niedrigsten Strahlungsschäden aufweist. Die Verwendung von WG Plutonium hatte keinen negativen Effekt auf den Strahlungsschäden des untersuchten Strukturmaterials.
References
1 IAEA, Potential of thorium based fuel cycles to constrain plutonium and reduce long lived waste toxicity, International Atomic Energy Agency, Vienna, Austria, IAEA-TECDOC-1349, 2003Search in Google Scholar
2 Ponomarev-Stepnoi, N.: Nuclear power of the 21st century. Nucl. Eng. Des.173 (1997) 2110.1016/S0029-5493(97)00085-XSearch in Google Scholar
3 Ponomarev-Stepnoi, N.; Tsourikov, D.: Russian plutonium policy. Nucl. Eng. Des.173 (1997) 29310.1016/S0029-5493(97)00083-6Search in Google Scholar
4 Koudriatsev, E.; Petrova, L.; Pshenin, V.; et al.: Use of weapons-grade plutonium from dismantled nuclear weapons for the peaceful objective of electric power generation. In: AIDA/MOX 2, Proceedings, GLOBAL 2003, vol. 2, New Orleans, LA, November 16–20, (2003) pp. 1855–1862Search in Google Scholar
5 Alekseev, P. N.; Ignatiev, V. V.; Konakov, S. A.: Harmonization of fuel cycles for nuclear energy system with the use of molten salt technology. Nucl. Eng. Des.173 (1997) 15110.1016/S0029-5493(97)00090-3Search in Google Scholar
6 Akie, H.; Muromura, T.; Takano, H.; Matsuura, S.: A new fuel material for once-through weapons plutonium burning. Nucl. Technol.107 (1994) 182Search in Google Scholar
7 Yamashita, T.; Akie, H.; Nakano, Y.; et al.: Current status of researchers on the plutonium rock-like oxide fuel and its burning in light water reactors. Progr. Nucl. Energ.38 (2001) 32710.1016/S0149-1970(00)00127-XSearch in Google Scholar
8 Şahin, S.; Yildiz, K.; Şahin, H. M.; Şahin, N.; Acir, A.: Increased fuel burn up in a CANDU thorium reactor using weapon grade plutonium. Nucl. Eng. Des.236 (2006) 177810.1016/j.nucengdes.2006.01.014Search in Google Scholar
9 Übeyli, M.; Acir, A.: Incineration of weapon grade plutonium in a (DT) fusion driven hybrid reactor. Kerntechnik72 (2007) 27Search in Google Scholar
10 Übeyli, M.: Effect of using various grades of plutonium in the protective liquid wall of an IFE type fusion reactor. Kerntechnik74 (2009) 51Search in Google Scholar
11 Übeyli, M.: A study on the neutronic performance of the ARIES-RS fusion reactor with various coolants bearing nuclear fuel. Kerntechnik73 (2008) 207Search in Google Scholar
12 Übeyli, M.: Potential use of molten salts bearing plutonium fluorides in a magnetic fusion energy reactor. Ann. Nucl. Energy35 (2008) 108710.1016/j.anucene.2007.10.005Search in Google Scholar
13 House, P. A.: HYLIFE-II reactor chamber mechanical design. Fusion Technol.21 (1992) 1487Search in Google Scholar
14 House, P. A.: HYLIFE-II reactor chamber design refinements. Fusion Technol.26 (1994) 1178Search in Google Scholar
15 Moir, R. W.: HYLIFE-II inertial fusion energy power plant design. Fusion Technol.21 (1992) 1475Search in Google Scholar
16 Moir, R. W.; Bieri, R. L.; Chen, X. M.; et al.: HYLIFE-II: A Molten-Salt Inertial Fusion Energy Power Plant Design – Final Report. Fusion Technol.25 (1994) 5Search in Google Scholar
17 Duderstadt, J. J.; Moses Gregory, A.: Inertial confinement fusion, New York: John Wiley and Sons, 198218 Şahin, S.; Yalçin, Ş.; Şahin, H. M.; Übeyli, M.: Neutronics analysis of HYLIFE-II blanket for fissile fuel breeding in an inertial fusion energy reactor. Ann. Nucl. Energy. 30 (2003) 669Search in Google Scholar
19 Şahin, S.; Übeyli, M.: Radiation damage studies on the first wall of a HYLIFE-II type fusion breeder. Energy Convers. Manage.46 (2005) 318510.1016/j.enconman.2005.03.007Search in Google Scholar
20 Übeyli, M.: Reducing effective liquid wall thickness in a HYLIFE-II fusion breeder. J. Fusion Energ.23 (2004) 18310.1007/s10894-005-5598-8Search in Google Scholar
21 Übeyli, M.: Neutronic performance of HYLIFE-II fusion reactor using various thorium molten salts. Ann. Nucl. Energy33 (2006) 141710.1016/j.anucene.2006.09.006Search in Google Scholar
22 Übeyli, M.; Demir, T.: Investigation on the radiation damage behavior of various alloys in a fusion reactor using thorium molten salt. Mater Design29 (2008) 85210.1016/j.matdes.2007.03.012Search in Google Scholar
23 Thoma, R. E.: Chemical Feasibility of Fueling Molten Salt Reactors with PuF3. Oak Ridge National Laboratory Report, ORNL-TM-2256, October 1968Search in Google Scholar
24 Klueh, R. L.; Alexander, D. J.; Kenik, E. A.: Development of low-chromium, chromium-tungsten steels for fusion. J. Nucl. Mater.227 (1995) 1110.1016/0022-3115(95)00143-3Search in Google Scholar
25 Abdou, M. A. and The APEX Team: Exploring novel high power density concepts for attractive fusion systems. Fusion Eng. Des.45 (1999) 14510.1016/S0920-3796(99)00018-6Search in Google Scholar
26 Kurtz, R. J.; Abe, K.; Chernov, V. M.; et al.: Critical issues and current status of vanadium alloys for fusion energy applications. J. Nucl. Mater.283–287 (2000) 7010.1016/S0022-3115(00)00351-2Search in Google Scholar
27 Zinkle, S. J.; Ghoniem, N. M.: Operating temperature windows for fusion reactor structural materials. Fus. Eng. Des.51-52, (2000) 5510.1016/S0920-3796(00)00320-3Search in Google Scholar
28 Hasegawa, A.; Kohyama, A.; Jones, R. H.; et al.: Critical issues and current status of SiC/SiC composites for fusion. J. Nucl. Mater.283–287 (2000) 12810.1016/S0022-3115(00)00374-3Search in Google Scholar
29 Yoshida, N.: Review of recent works in development and evaluation of high-Z plasma facing materials. J. Nucl. Mater.266–269 (1999) 197Search in Google Scholar
30 Petrie, L. M.: Scale System Driver, NUREG/CR-0200, Revision 7, Volume III, Section M1, ORNL/NUREG/CSD-2/V3/R7, Oak Ridge National Laboratory, May 19, 2004Search in Google Scholar
31 Greene, N. M.; Petrie, L. M.: “XSDRNPM, A One-Dimensional Discrete-Ordinates Code For Transport Analysis”, NUREG/CR-0200, Revision 7, 2, Section F3, ORNL/NUREG/CSD-2/V2/R7, Oak Ridge National Laboratory, 2004Search in Google Scholar
32 Şahin, S.: Radiation shielding calculations for fast reactors (in Turkish), Gazi University, Publication No. 169, Faculty of Science and Literature, Publication No. 22, Ankara, Turkey (1991)Search in Google Scholar
33 Jordan, W. C.; Bowman, S. M.; Hollenbach, D. F.: Scale Cross-Section Libraries. NUREG/CR-0200, Revision 7, 3, Section M4, ORNL/NUREG/CSD-2/V3/R7, Oak Ridge National Laboratory, 2004Search in Google Scholar
34 Al-Kusayer, T. A.; Şahin,S.; Drira, A.: CLAW-IV, Coupled 30 neutrons, 12 gamma ray group cross sections with retrieval programs for radiation transport calculations, RSIC Newsletter, Radiation Shielding Information Center, Oak Ridge National Laboratory (1988)Search in Google Scholar
35 Greene, N. M.: BONAMI, Resonance Self-Shielding by the Bondarenko Method. NUREG/CR-0200, Revision 6, 2, section F1, ORNL/NUREG/CSD-2/V2/R7, Oak Ridge National Laboratory, 2004Search in Google Scholar
36 Greene, N. M.; Petrie, L. M.; Westfall, R. M.: NITAWL-III, Scale System Module For Performing Resonance Shielding and Working Library Production. NUREG/CR-0200, Revision 6, 2, Section F2, ORNL/NUREG/CSD-2/V2/R7, Oak Ridge National Laboratory, 2004Search in Google Scholar
37 Landers, N. F.; Petrie, L. M.; Hollenbach, D. F.: CSAS, Control Module for Enhanced Criticality Safety Analysis Sequences. NUREG/CR-0200, Revision 6, 1, Section C4, ORNL/NUREG/CSD-2/V1/R7, Oak Ridge National Laboratory, 2004Search in Google Scholar
38 Foster, A. R.; Wright, R. L.Jr: Basic Nuclear Engineering. Boston, Massachusetts: Allyn and Bacon, Inc., 1983Search in Google Scholar
39 Schilling, W.; Ullmaier, H.: Physics of radiation damage in metals. In: CahnRW, HaasenP, KramerEJ, Editors. Materials Science and Technology, Vol. 10B. Weinheim: VCH Verlagsgesellschaft mbH, p. 179–241, 1994Search in Google Scholar
40 Smith, D. L.; Morgan, G. D.; Abdou, M. A.; et al.: Blanket Comparison and Selection Study-Final Report, ANL/FPP-84-1, Argonne National Laboratory (1984)Search in Google Scholar
41 Blink, A.; Hogan, W. J.; Hovingh, J.; Meier, W. R.; Pitts, J. H.: The High-Yield Lithium-Injection Fusion Energy (HYLIFE) Reactor, UCRL-53559, (Editors: K.L.Essary, K.E.Lewis), Lawrence Livermore National Laboratory (1985)10.2172/6124368Search in Google Scholar
42 Perlado, M.; Guinan, M. W.; Abe, K.: Radiation Damage in Structural Materials, Energy from Inertial Fusion, International Atomic Energy Agency, 272, Vienna (1995)Search in Google Scholar
43 Youssef, M. Z.; Abdou, M. A.: Heat deposition, damage and tritium breeding characteristics in thick liquid wall blanket concepts. Fusion Eng. Des.49–50 (2000) 71910.1016/S0920-3796(00)00179-4Search in Google Scholar
44 Chen, Y.; Fischer, U.; Pereslavtsev, P.; Wasastjerna, F.: The EU Power Plant Conceptual Study#151;Neutronic Design Analyses for Near Term and Advanced Reactor Models, Report, Institut für Reaktorsicherheit, FZKA 6763, April 2003Search in Google Scholar
45 Jordanova, J; Fischer, U.; Perestlavtsev, P.; et al.: Evaluation of nuclear heating, tritium breeding and shielding efficiency of the DEMO HCLL breeder blanket. Fusion Eng. Des., 75–79, (2005) 963.10.1016/j.fusengdes.2005.06.044Search in Google Scholar
46 Moir, R. W.: The logic behind thick, liquid walled, fusion concepts. Fusion Eng. Des.29 (1995) 3410.1016/0920-3796(95)80003-GSearch in Google Scholar
47 Şahin, S.; Moir, R. W.; Lee, J. D.; Ünalan, S.: Neutronic investigation of IFE blankets for HYLFE-II and MHD applications. Fusion Technol.25 (1994) 388Search in Google Scholar
48 Şahin, S.; Moir, R. W.; Şahinaslan,A.; Şahin,H. M.: Radiation damage in liquid-protected first wall materials for IFE-reactors. Fusion Technol.30 Part 2 A (1996) 102710.13182/FST96-A11963072Search in Google Scholar
© 2011, Carl Hanser Verlag, München
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Overview of safety improvement during RBMK-1500 reactor core lifetime upgrading
- Strategy, main stages and progress of the Ignalina Nuclear Power Plant decommissioning
- Environmental safety aspects of the new solid radioactive waste management and storage facility at the Ignalina Nuclear Power Plant
- Preliminary evaluation of effect of Engineered Safety Features on source term for AHWR containment
- Burn up extension in a PBMR-400 full core using weapon grade plutonium fuel mixed with thorium
- A study on the damage of potential first wall materials in a nuclear fusion reactor using plutonium bearing salt
- An analytical benchmark of MYRRHA ADS in cylindrical geometry
- Dosimetric characteristics of three new design 125I brachytherapy sources
- Determination of 89Zr production parameters via different reactions using ALICE and TALYS codes
- Novel dose calculation and characterization of 32P intravascular brachytherapy stent source
- Cyclotron production of 85Sr by proton irradiation of natRb
- Lessons learnt from PSA for new and advanced reactors in Russia
Articles in the same Issue
- Contents/Inhalt
- Contents
- Summaries/Kurzfassungen
- Summaries
- Technical Contributions/Fachbeiträge
- Overview of safety improvement during RBMK-1500 reactor core lifetime upgrading
- Strategy, main stages and progress of the Ignalina Nuclear Power Plant decommissioning
- Environmental safety aspects of the new solid radioactive waste management and storage facility at the Ignalina Nuclear Power Plant
- Preliminary evaluation of effect of Engineered Safety Features on source term for AHWR containment
- Burn up extension in a PBMR-400 full core using weapon grade plutonium fuel mixed with thorium
- A study on the damage of potential first wall materials in a nuclear fusion reactor using plutonium bearing salt
- An analytical benchmark of MYRRHA ADS in cylindrical geometry
- Dosimetric characteristics of three new design 125I brachytherapy sources
- Determination of 89Zr production parameters via different reactions using ALICE and TALYS codes
- Novel dose calculation and characterization of 32P intravascular brachytherapy stent source
- Cyclotron production of 85Sr by proton irradiation of natRb
- Lessons learnt from PSA for new and advanced reactors in Russia