Startseite Technik A study on the damage of potential first wall materials in a nuclear fusion reactor using plutonium bearing salt
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A study on the damage of potential first wall materials in a nuclear fusion reactor using plutonium bearing salt

  • M. Übeyli
Veröffentlicht/Copyright: 19. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Selection of first wall material for fusion reactors is very crucial when taking into account of fusion blanket design and operation cost. A realistic way to extend the working period of first wall structure is to use a protective flowing liquid wall between fusion plasma and first wall. HYLIFE-II, one of the important fusion reactor design concepts, uses such a liquid wall. In the current article, the radiation damage on the first wall of HYLIFE-II fusion reactor was investigated for various candidate materials. In the liquid wall of the reactor, a molten salt containing weapon grade (WG) plutonium isotopes was used. The numerical results indicated that a refractory alloy of W-5Re was found to have the lowest damage values. In addition, the use of WG plutonium isotopes did not have a negative effect on the radiation damage characteristics of the investigated structural materials.

Kurzfassung

Die Wahl des Materials für die innere Wand eines Fusionsreaktors ist entscheidend wenn man das Blanket Design und die Betriebskosten betrachtet. Ein realistischer Weg zur Verlängerung der Lebensdauer der Struktur der inneren Wand ist die Verwendung einer schützenden Flüssigkeitswand zwischen dem Fusionsplasma und der inneren Wand. HYLIFE-II, eines der wichtigsten Designkonzepte für Fusionsreaktoren verwendet eine solche flüssige Wand. In der vorliegenden Arbeit wurden Strahlungsschäden der inneren Wand eines HYLIFE-II Fusionsreaktors bei verschiedenen Materialien untersucht. In der flüssigen Wand des Reaktors wurde ein geschmolzenes Salz verwendet, das waffenfähiges (WG) Plutonium enthält. Die numerischen Ergebnisse zeigen, dass eine hochschmelzende Legierung aus W-5Re die niedrigsten Strahlungsschäden aufweist. Die Verwendung von WG Plutonium hatte keinen negativen Effekt auf den Strahlungsschäden des untersuchten Strukturmaterials.

References

1 IAEA, Potential of thorium based fuel cycles to constrain plutonium and reduce long lived waste toxicity, International Atomic Energy Agency, Vienna, Austria, IAEA-TECDOC-1349, 2003Suche in Google Scholar

2 Ponomarev-Stepnoi, N.: Nuclear power of the 21st century. Nucl. Eng. Des.173 (1997) 2110.1016/S0029-5493(97)00085-XSuche in Google Scholar

3 Ponomarev-Stepnoi, N.; Tsourikov, D.: Russian plutonium policy. Nucl. Eng. Des.173 (1997) 29310.1016/S0029-5493(97)00083-6Suche in Google Scholar

4 Koudriatsev, E.; Petrova, L.; Pshenin, V.; et al.: Use of weapons-grade plutonium from dismantled nuclear weapons for the peaceful objective of electric power generation. In: AIDA/MOX 2, Proceedings, GLOBAL 2003, vol. 2, New Orleans, LA, November 16–20, (2003) pp. 18551862Suche in Google Scholar

5 Alekseev, P. N.; Ignatiev, V. V.; Konakov, S. A.: Harmonization of fuel cycles for nuclear energy system with the use of molten salt technology. Nucl. Eng. Des.173 (1997) 15110.1016/S0029-5493(97)00090-3Suche in Google Scholar

6 Akie, H.; Muromura, T.; Takano, H.; Matsuura, S.: A new fuel material for once-through weapons plutonium burning. Nucl. Technol.107 (1994) 182Suche in Google Scholar

7 Yamashita, T.; Akie, H.; Nakano, Y.; et al.: Current status of researchers on the plutonium rock-like oxide fuel and its burning in light water reactors. Progr. Nucl. Energ.38 (2001) 32710.1016/S0149-1970(00)00127-XSuche in Google Scholar

8 Şahin, S.; Yildiz, K.; Şahin, H. M.; Şahin, N.; Acir, A.: Increased fuel burn up in a CANDU thorium reactor using weapon grade plutonium. Nucl. Eng. Des.236 (2006) 177810.1016/j.nucengdes.2006.01.014Suche in Google Scholar

9 Übeyli, M.; Acir, A.: Incineration of weapon grade plutonium in a (DT) fusion driven hybrid reactor. Kerntechnik72 (2007) 27Suche in Google Scholar

10 Übeyli, M.: Effect of using various grades of plutonium in the protective liquid wall of an IFE type fusion reactor. Kerntechnik74 (2009) 51Suche in Google Scholar

11 Übeyli, M.: A study on the neutronic performance of the ARIES-RS fusion reactor with various coolants bearing nuclear fuel. Kerntechnik73 (2008) 207Suche in Google Scholar

12 Übeyli, M.: Potential use of molten salts bearing plutonium fluorides in a magnetic fusion energy reactor. Ann. Nucl. Energy35 (2008) 108710.1016/j.anucene.2007.10.005Suche in Google Scholar

13 House, P. A.: HYLIFE-II reactor chamber mechanical design. Fusion Technol.21 (1992) 1487Suche in Google Scholar

14 House, P. A.: HYLIFE-II reactor chamber design refinements. Fusion Technol.26 (1994) 1178Suche in Google Scholar

15 Moir, R. W.: HYLIFE-II inertial fusion energy power plant design. Fusion Technol.21 (1992) 1475Suche in Google Scholar

16 Moir, R. W.; Bieri, R. L.; Chen, X. M.; et al.: HYLIFE-II: A Molten-Salt Inertial Fusion Energy Power Plant Design – Final Report. Fusion Technol.25 (1994) 5Suche in Google Scholar

17 Duderstadt, J. J.; Moses Gregory, A.: Inertial confinement fusion, New York: John Wiley and Sons, 198218 Şahin, S.; Yalçin, Ş.; Şahin, H. M.; Übeyli, M.: Neutronics analysis of HYLIFE-II blanket for fissile fuel breeding in an inertial fusion energy reactor. Ann. Nucl. Energy. 30 (2003) 669Suche in Google Scholar

19 Şahin, S.; Übeyli, M.: Radiation damage studies on the first wall of a HYLIFE-II type fusion breeder. Energy Convers. Manage.46 (2005) 318510.1016/j.enconman.2005.03.007Suche in Google Scholar

20 Übeyli, M.: Reducing effective liquid wall thickness in a HYLIFE-II fusion breeder. J. Fusion Energ.23 (2004) 18310.1007/s10894-005-5598-8Suche in Google Scholar

21 Übeyli, M.: Neutronic performance of HYLIFE-II fusion reactor using various thorium molten salts. Ann. Nucl. Energy33 (2006) 141710.1016/j.anucene.2006.09.006Suche in Google Scholar

22 Übeyli, M.; Demir, T.: Investigation on the radiation damage behavior of various alloys in a fusion reactor using thorium molten salt. Mater Design29 (2008) 85210.1016/j.matdes.2007.03.012Suche in Google Scholar

23 Thoma, R. E.: Chemical Feasibility of Fueling Molten Salt Reactors with PuF3. Oak Ridge National Laboratory Report, ORNL-TM-2256, October 1968Suche in Google Scholar

24 Klueh, R. L.; Alexander, D. J.; Kenik, E. A.: Development of low-chromium, chromium-tungsten steels for fusion. J. Nucl. Mater.227 (1995) 1110.1016/0022-3115(95)00143-3Suche in Google Scholar

25 Abdou, M. A. and The APEX Team: Exploring novel high power density concepts for attractive fusion systems. Fusion Eng. Des.45 (1999) 14510.1016/S0920-3796(99)00018-6Suche in Google Scholar

26 Kurtz, R. J.; Abe, K.; Chernov, V. M.; et al.: Critical issues and current status of vanadium alloys for fusion energy applications. J. Nucl. Mater.283–287 (2000) 7010.1016/S0022-3115(00)00351-2Suche in Google Scholar

27 Zinkle, S. J.; Ghoniem, N. M.: Operating temperature windows for fusion reactor structural materials. Fus. Eng. Des.51-52, (2000) 5510.1016/S0920-3796(00)00320-3Suche in Google Scholar

28 Hasegawa, A.; Kohyama, A.; Jones, R. H.; et al.: Critical issues and current status of SiC/SiC composites for fusion. J. Nucl. Mater.283–287 (2000) 12810.1016/S0022-3115(00)00374-3Suche in Google Scholar

29 Yoshida, N.: Review of recent works in development and evaluation of high-Z plasma facing materials. J. Nucl. Mater.266269 (1999) 197Suche in Google Scholar

30 Petrie, L. M.: Scale System Driver, NUREG/CR-0200, Revision 7, Volume III, Section M1, ORNL/NUREG/CSD-2/V3/R7, Oak Ridge National Laboratory, May 19, 2004Suche in Google Scholar

31 Greene, N. M.; Petrie, L. M.: “XSDRNPM, A One-Dimensional Discrete-Ordinates Code For Transport Analysis”, NUREG/CR-0200, Revision 7, 2, Section F3, ORNL/NUREG/CSD-2/V2/R7, Oak Ridge National Laboratory, 2004Suche in Google Scholar

32 Şahin, S.: Radiation shielding calculations for fast reactors (in Turkish), Gazi University, Publication No. 169, Faculty of Science and Literature, Publication No. 22, Ankara, Turkey (1991)Suche in Google Scholar

33 Jordan, W. C.; Bowman, S. M.; Hollenbach, D. F.: Scale Cross-Section Libraries. NUREG/CR-0200, Revision 7, 3, Section M4, ORNL/NUREG/CSD-2/V3/R7, Oak Ridge National Laboratory, 2004Suche in Google Scholar

34 Al-Kusayer, T. A.; Şahin,S.; Drira, A.: CLAW-IV, Coupled 30 neutrons, 12 gamma ray group cross sections with retrieval programs for radiation transport calculations, RSIC Newsletter, Radiation Shielding Information Center, Oak Ridge National Laboratory (1988)Suche in Google Scholar

35 Greene, N. M.: BONAMI, Resonance Self-Shielding by the Bondarenko Method. NUREG/CR-0200, Revision 6, 2, section F1, ORNL/NUREG/CSD-2/V2/R7, Oak Ridge National Laboratory, 2004Suche in Google Scholar

36 Greene, N. M.; Petrie, L. M.; Westfall, R. M.: NITAWL-III, Scale System Module For Performing Resonance Shielding and Working Library Production. NUREG/CR-0200, Revision 6, 2, Section F2, ORNL/NUREG/CSD-2/V2/R7, Oak Ridge National Laboratory, 2004Suche in Google Scholar

37 Landers, N. F.; Petrie, L. M.; Hollenbach, D. F.: CSAS, Control Module for Enhanced Criticality Safety Analysis Sequences. NUREG/CR-0200, Revision 6, 1, Section C4, ORNL/NUREG/CSD-2/V1/R7, Oak Ridge National Laboratory, 2004Suche in Google Scholar

38 Foster, A. R.; Wright, R. L.Jr: Basic Nuclear Engineering. Boston, Massachusetts: Allyn and Bacon, Inc., 1983Suche in Google Scholar

39 Schilling, W.; Ullmaier, H.: Physics of radiation damage in metals. In: CahnRW, HaasenP, KramerEJ, Editors. Materials Science and Technology, Vol. 10B. Weinheim: VCH Verlagsgesellschaft mbH, p. 179241, 1994Suche in Google Scholar

40 Smith, D. L.; Morgan, G. D.; Abdou, M. A.; et al.: Blanket Comparison and Selection Study-Final Report, ANL/FPP-84-1, Argonne National Laboratory (1984)Suche in Google Scholar

41 Blink, A.; Hogan, W. J.; Hovingh, J.; Meier, W. R.; Pitts, J. H.: The High-Yield Lithium-Injection Fusion Energy (HYLIFE) Reactor, UCRL-53559, (Editors: K.L.Essary, K.E.Lewis), Lawrence Livermore National Laboratory (1985)10.2172/6124368Suche in Google Scholar

42 Perlado, M.; Guinan, M. W.; Abe, K.: Radiation Damage in Structural Materials, Energy from Inertial Fusion, International Atomic Energy Agency, 272, Vienna (1995)Suche in Google Scholar

43 Youssef, M. Z.; Abdou, M. A.: Heat deposition, damage and tritium breeding characteristics in thick liquid wall blanket concepts. Fusion Eng. Des.49–50 (2000) 71910.1016/S0920-3796(00)00179-4Suche in Google Scholar

44 Chen, Y.; Fischer, U.; Pereslavtsev, P.; Wasastjerna, F.: The EU Power Plant Conceptual Study#151;Neutronic Design Analyses for Near Term and Advanced Reactor Models, Report, Institut für Reaktorsicherheit, FZKA 6763, April 2003Suche in Google Scholar

45 Jordanova, J; Fischer, U.; Perestlavtsev, P.; et al.: Evaluation of nuclear heating, tritium breeding and shielding efficiency of the DEMO HCLL breeder blanket. Fusion Eng. Des., 75–79, (2005) 963.10.1016/j.fusengdes.2005.06.044Suche in Google Scholar

46 Moir, R. W.: The logic behind thick, liquid walled, fusion concepts. Fusion Eng. Des.29 (1995) 3410.1016/0920-3796(95)80003-GSuche in Google Scholar

47 Şahin, S.; Moir, R. W.; Lee, J. D.; Ünalan, S.: Neutronic investigation of IFE blankets for HYLFE-II and MHD applications. Fusion Technol.25 (1994) 388Suche in Google Scholar

48 Şahin, S.; Moir, R. W.; Şahinaslan,A.; Şahin,H. M.: Radiation damage in liquid-protected first wall materials for IFE-reactors. Fusion Technol.30 Part 2 A (1996) 102710.13182/FST96-A11963072Suche in Google Scholar

Received: 2011-01-21
Published Online: 2013-04-19
Published in Print: 2011-11-01

© 2011, Carl Hanser Verlag, München

Heruntergeladen am 11.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/124.110161/pdf
Button zum nach oben scrollen