Home Chebyshev polynomial (TN) approximation to neutron transport theory and application to the critical slab problem
Article
Licensed
Unlicensed Requires Authentication

Chebyshev polynomial (TN) approximation to neutron transport theory and application to the critical slab problem

  • A. Bülbül and F. Anlı
Published/Copyright: April 5, 2013
Become an author with De Gruyter Brill

Abstract

The critical slab problem has been studied in the one-speed neutron transport equation with isotropic scattering by using the first kind of Chebyshev Polynomials. The moment criticality solutions were obtained for the uniform finite slab using Mark and Marshak type vacuum boundary conditions. The results obtained by this approximation are presented in tables which also include the results obtained by the PN method for comparison.

Kurzfassung

Das Kritikalitätsproblem in ebener Geometrie wurde untersucht in der Eingruppen-Neutronentransportgleichung mit isotroper Streuung mit Hilfe von Tschebyscheff-Polynomen erster Ordnung. Die Kritikalitätslösungen für gleichförmige finite Platten wurden mit Hilfe der Vakuum-Randbedingungen vom Typ Mark and Marshak erhalten. Die mit dieser Approximation erhaltenen Ergebnisse werden in Tabellenform vorgestellt. Die Tabellen zeigen zum Vergleich auch Ergebnisse, die mit der PN Methode erhalten wurden.

References

1 Mark, C.: Chalk River Reports. CRT-338 and CRT-340 (1957)Search in Google Scholar

2 Davison, B.: Neutron Transport Theory. New York: Oxford, Chap.10 et seq. (1957)Search in Google Scholar

3 Conkie, W. R.: An Iterative Method in Neutron Transport Theory. Nucl. Sci. Eng.6 (1959) 267Search in Google Scholar

4 Conkie, W. R.: Polynomial Approximations in Neutron Transport Theory. Nucl. Scie. Eng.6 (1959) 260Search in Google Scholar

5 Aspelund, O.: On a New Method for Solving the (Boltzmann) Equation in Neutron Transport Theory. PICG16 (1959) 530Search in Google Scholar

6 Yabushita, S.: Tschebyscheff Polynomial Approximation Method of the Neutron-Transport Equation. Journal of Math. Physics2 (1961) 543Search in Google Scholar

7 Anlı, F.; Yasa, F.; Güngör, S.; Öztürk, H.: TN approximation to neutron transport equation and application to critical slab problem. J. Quant. Spectroscopy Radiat. Transfer101 (2006) 129Search in Google Scholar

8 Anlı, F.; Yasa, F.; Güngör, S.; Öztürk, H.: TN approximation to reflected slab and computation of the critical half thickness. J. Quant. Spectroscopy Radiation Transfer101 (2006) 135Search in Google Scholar

9 Yılmazer, A.: Spectral PN approximation(s) to the transport problems in spherical media. J. Quant. Spectroscopy Radiation Transfer108 (2007) 403Search in Google Scholar

10 Yılmazer, A.: Solution of one-speed neutron transport equation for strongly anisotropic scattering by TN approximation: Slab criticality problem. J. Quant. Spectroscopy Radiation Transfer34 (2007) 743Search in Google Scholar

11 Sanchez, R.; McCormick, N. J.: Nucl. Sci. Eng.80 (1982) 481Search in Google Scholar

12 Lee, C. E.; Dias, M. P.: Analytical Solutions to the Moment Transport Equations. Ann. Nucl. Energy11 (1984) 51510.1016/0306-4549(84)90076-8Search in Google Scholar

Received: 2008-2-6
Published Online: 2013-04-05
Published in Print: 2008-09-01

© 2008, Carl Hanser Verlag, München

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/124.100559/html
Scroll to top button