Startseite High temperature compressive behavior of three-dimensional five-directional braided composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

High temperature compressive behavior of three-dimensional five-directional braided composites

  • Jiayi Liu , Junmeng Zhou , Yu Wang , Jie Mei und Jialin Liu
Veröffentlicht/Copyright: 13. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An experimental study was performed to investigate the high temperature compressive properties and failure mechanism of three-dimensional (3D) five-directional braided composites. The compression tests of 3D braided composites were conducted at six different temperatures. The failure modes, stress-strain curves, compressive modulus and strength at high temperature were analyzed and compared with those at room temperature. The results showed that temperature has a visible impact on these parameters. The 3D braided composites failed due to shear fracture, and the stress-strain curves exhibited obvious linear elasticity and a brittle failure feature at 20 and 50 °C, while the failure was characterized by fiber/matrix interface debonding, fiber bundles loosening and by outward expansion, and the stress-strain curves exhibited an obvious non-linear trend and a plastic failure feature at 70, 90, 110 and 130 °C. The compressive modulus and strength decreased as temperature increased. The compressive modulus and strength decreased by 92.9 % and 94.1 % as the temperature increased from 20 °C to 130 °C, which was mainly due to the degradation of the matrix properties and fiber/matrix interface properties at high temperature.

Kurzfassung

Die Hochtemperatur-Kompressionseigenschaften und der Versagensmechanismus von dreidimensional und in fünf Richtungen geflochtenen Kompositen wurden für diesen Beitrag experimentell untersucht. Die Kompressionstests der 3D geflochtenen Komposite wurden bei sechs verschiedenen Temperaturen durchgeführt. Es wurden die Versagensmodi, die Spannungs-Dehnungs-Kurven, der Druckmodul und die Festigkeit bei hohen Temperaturen analysiert und mit denen bei Raumtemperatur verglichen. Die Ergebnisse zeigen, dass die Temperatur einen sichtbaren Einfluss auf diese Werkstoffeigenschaften hat. Die dreidimensional geflochtenen Komposite versagten durch Schubspannungsbruch, und die Spannungs-Dehnungs-Kurven zeigten eine lineare Elastizität und ein sprödes Versagen bei 20 und 50 °C, während das Versagen durch eine Trennung der Faser-Matrix-Grenzfläche, eine Lockerung der Faserbündel und auswärts gerichtete Verlängerung charakterisiert wurde und die Spannungs-Dehnungs-Kurven einen sichtbaren nichtlinearen Trend und Merkmale plastischen Versagens bei 70, 90, 110 und 130 °C aufwiesen. Der Druckmodul und die Festigkeit nahmen um 92.9 % und 94.1 % ab, als die Temperatur von 20 auf 130 °C anstieg, was hauptsächlich auf die Degradation der Matrixeigenschaften und der Eigenschaften der Faser-Matrix-Grenzfläche bei hohen Temperaturen zurückzuführen war.


*Correspondence Address, Jie Mei, School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China, E-mail:

Dr. Jiayi Liu, born in 1985, works as Lecturer at the School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, PR China. He received his PhD degree from Harbin Institute of Technology, Harbin, PR China in 2013. His research interest focuses on composite lightweight structure.

Junmeng Zhou, born in 1995, is a master's student of Design and Construction of Naval Architecture and Ocean Structure at the School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, PR China. He received his Bachelor's degree from Huazhong University of Science and Technology, Wuhan, PR China in 2017. His research interest focuses on composite lightweight structure.

Yu Wang, born in 1994, is a master's student of Naval Architecture and Ocean Engineering at the School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, PR China. She received her Bachelor's degree from Huazhong University of Science and Technology, Wuhan, PR China in 2016. Her research interest focuses on composite lightweight structure.

Jie Mei, born in 1994, is a master's student of Design and Construction of Naval Architecture and Ocean Structure at the School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, PR China. He received his Bachelor's degree from Hohai University, Nanjing, PR China in 2016. His research interest focuses on composite lightweight structure.

Jialin Liu, born in 1992, is a master's student of Design and Construction of Naval Architecture and Ocean Structure at the School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan, PR China. He received his Bachelor's degree from Huazhong University of Science and Technology, Wuhan, PR China in (2016. His research interest focuses on composite lightweight structure.


References

1 F. K.Ko: Three-dimensional fabrics for composites: an introduction to the magna weave structure, Proceedings of the 4th international conference on composite materials (ICCM-4), Tokyo/Japan (1982), pp. 16091678Suche in Google Scholar

2 A.Cagri, C.Jason: 2D braided composites: a review for stiffness critical applications, Composite Structures85 (2008), pp. 435810.1016/j.compstruct.2007.10.004Suche in Google Scholar

3 D. S.Li, D. N.Fang, G. B.Zhang, H.Hu: Effect of temperature on bending properties and failure mechanism of three-dimensional braided composite. Materials & Design41 (2012), pp. 16717010.1016/j.matdes.2012.04.055Suche in Google Scholar

4 M.Zhang, C. P.Zuo, B. Z.Sun, B. H.Gu: Thermal ageing degradation mechanisms on compressive behavior of 3-D braided composites in experimental and numerical study, Composite Structures140 (2016), pp. 18019110.1016/j.compstruct.2016.01.029Suche in Google Scholar

5 Z. X.Pan, B. H.Gu, B. Z.Sun: Experimental investigation of high-strain rate properties of 3-D braided composite material in cryogenic field, Composites Part B-Engineering77 (2015), pp. 37939010.1016/j.compositesb.2015.03.002Suche in Google Scholar

6 X. L.Huang, X. L.Jia, J.Yang, Y. F.Wu: Nonlinear vibration and dynamic response of three-dimensional braided composite plates, Mechanics of Advance Materials and Structures15 (2008), pp. 536310.1080/15376490701750405Suche in Google Scholar

7 D. S.Li, C. Q.Zhao, T. Q.Ge, L.Jiang, C. J.Huang, N.Jiang: Experimental investigation on the compression properties and failure mechanism of 3D braided composites at room and liquid nitrogen temperature, Composites Part B-Engineering56 (2014), pp. 64765910.1016/j.compositesb.2013.08.068Suche in Google Scholar

8 J. J.Zhai, T.Zeng, G. D.Xu, Z. H.Wang, S.Cheng, D. N.Fang: A multi-scale finite element method for failure analysis of three-dimensional braided composite structures, Composites Part B-Engineering110 (2017), pp. 47648610.1016/j.compositesb.2016.11.039Suche in Google Scholar

9 D. S.Li, Z. X.Lu, N.Jiang, D. N.Fang: High strain rate behavior and failure mechanism of three-dimensional five-directional carbon/phenolic braided composites under transverse compression, Composites Part B-Engineering42 (2011), pp. 30931710.1016/j.compositesb.2010.11.011Suche in Google Scholar

10 G. D.Fang, J.Liang, B. L.Wang: Progressive damage and nonlinear analysis of 3D four- directional braided composites under unidirectional tension, Composite Structures89 (2009), pp. 12613310.1016/j.compstruct.2008.07.016Suche in Google Scholar

11 G. D.Fang, J.Liang, Y.Wang, B. L.Wang: The effect of yarn distortion on the mechanical properties of 3D four-directional braided composites, Composites Part A40 (2009), pp. 34335010.1016/j.compositesa.2008.12.007Suche in Google Scholar

12 G. D.Fang, J.Liang, Q.Lu, B. L.Wang, Y.Wang: Investigation on the compressive properties of the three dimensional four-directional braided composites, Composite Structures93 (2011), pp. 39240510.1016/j.compstruct.2010.09.002Suche in Google Scholar

13 H. L.Zhou, D. M.Hu, B. H.Gu, B. Z.Sun: Transverse impact performance and finite element analysis of three dimensional braided composite tubes with different braiding layers, Composite Structures168 (2017), pp. 34535910.1016/j.compstruct.2017.02.025Suche in Google Scholar

14 M. M.Shokrieh, M. S.Mazloomi: A new analytical model for calculation of stiffness of three-dimensional four-directional braided composites, Composite Structures94 (2012), pp. 1005101510.1016/j.compstruct.2011.09.010Suche in Google Scholar

15 D. S.Li, Z. X.Lu, D. N.Fang: Longitudinal compressive behavior and failure mechanism of three-dimensional five-directional carbon/phenolic braided composites at high strain rates, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing526 (2009), pp. 13413910.1016/j.msea.2009.07.009Suche in Google Scholar

16 T.Zeng, D. N.Fang, L.Ma, L. C.Guo: Predicting the nonlinear response and failure of 3D braided composites, Materials Letters58 (2004), pp. 3237324110.1016/j.matlet.2004.05.057Suche in Google Scholar

17 Z. X.Lu, C. Y.Wang, B.Xia, Z. Y.Yang: Effect of interfacial properties on the uniaxial tensile behavior of three-dimensional braided composites, Computational Material Science79 (2013), pp. 54755710.1016/j.commatsci.2013.07.017Suche in Google Scholar

18 O.Calme, D.Bigaud, P.Hamelin: 3D braided composite rings under lateral compression, Composites Science and Technology65 (2005), pp. 9510610.1016/j.compscitech.2004.06.007Suche in Google Scholar

19 Y. Y.Zheng, Y.Sun, J. L.Li, L. M.Liu, L.Chen, J. L.Liu, S. Q.Tian: Tensile response of carbon-aramid hybrid 3D braided composites, Materials & Design116 (2017), pp. 24625210.1016/j.matdes.2016.11.082Suche in Google Scholar

20 W. F.Hao, Y. N.Yuan, X. F.Yao, Y. J.Ma: Computational analysis of fatigue behavior of 3D 4-directional braided composites based on unit cell approach, Advances in Engineering Software82 (2015), pp. 385210.1016/j.advengsoft.2014.12.007Suche in Google Scholar

21 ASTM D695-96: Standard Test Method for Compressive Properties of Rigid Plastics, ASTM International, West Conshohocken, PA, USA (1996)Suche in Google Scholar

Published Online: 2018-07-13
Published in Print: 2018-07-16

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
  5. Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
  6. Tensile strength of 3D printed materials: Review and reassessment of test parameters
  7. Numerical calculation of stress concentration of various subsurface and undercutting pit types
  8. Chemical composition of chosen phase constituents in austempered ductile cast iron
  9. Investigation of initial yielding in the small punch creep test
  10. Optimization and characterization of friction surfaced coatings of ferrous alloys
  11. Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
  12. In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
  13. Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
  14. Thermography using a 1D laser array – From planar to structured heating
  15. Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
  16. Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
  17. High temperature compressive behavior of three-dimensional five-directional braided composites
  18. Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
  19. Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111212/html
Button zum nach oben scrollen