Startseite Thermography using a 1D laser array – From planar to structured heating
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Thermography using a 1D laser array – From planar to structured heating

  • Mathias Ziegler , Erik Thiel und Taarna Studemund
Veröffentlicht/Copyright: 13. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In the field of optically excited thermography, flash lamps (impulse-shaped planar heating) and halogen lamps (modulated planar heating) have become established for the specific regimes of impulse and lock-in thermography. Flying-spot laser thermography is implemented by means of a rasterized focused laser, e. g. for crack detection (continuous wave operation) and photothermal material characterization (high-frequency modulated). The availability of novel technologies, i. e. fast and high-resolution IR cameras, brilliant innovative light sources and high-performance data acquisition and processing technology will enable a paradigm shift from stand-alone photothermal and thermographic techniques to uniform quantitative measurement and testing technology that is faster and more precise. Similar to an LED array, but with irradiance two orders of magnitude higher, a new type of brilliant laser source, i. e. the VCSEL array (vertical-cavity surface-emitting laser), is now available. This novel optical energy source eliminates the strong limitation to the temporal dynamics of established light sources and at the same time is spectrally clearly separated from the detection wavelength. It combines the fast temporal behavior of a diode laser with the high optical irradiance and the wide illumination area of flash lamps. In addition, heating can also be carried out in a structured manner, because individual areas of the VCSEL array can be controlled independently of each other. This new degree of freedom enables the development of completely new thermographic NDT methods.

Kurzfassung

Im Bereich der optisch angeregten Thermografie haben sich Blitzlampen (impulsförmig-flächige Erwärmung) und Halogenlampen (moduliert-flächige Erwärmung) für die spezifischen Regime Impuls- und Lockin-Thermografie etabliert. Mittels eines rasternden fokussierten Lasers wird die Flying-spot Laserthermografie z.B. zur Risserkennung (Dauerstrichbetrieb) und die photothermische Materialcharakterisierung (hochfrequent moduliert) implementiert. Durch die Verfügbarkeit neuer Technologien, wie z.B. schnelle und hochauflösende IR-Kameras, brillante innovative Lichtquellen und performante Datenakquisitions- und Verarbeitungstechnik, wird ein Paradigmenwechsel von den getrennt voneinander stehenden photothermischen und thermografischen Techniken hin zu einer einheitlichen quantitativen Mess- und Prüftechnik ermöglicht, die schneller und präziser ist. Ähnlich wie ein LED-Array, jedoch mit einer um zwei Größenordnungen höheren Bestrahlungsstärke, steht jetzt eine neuartige brillante Laserquelle, das VCSEL-Array (vertical-cavity surface-emitting laser) zur Verfügung, welches die starke Beschränkung der zeitlichen Dynamik der etablierten Lichtquellen aufhebt und gleichzeitig spektral sauber von der Detektionswellenlänge getrennt ist. Es vereint somit das schnelle zeitliche Verhalten eines Diodenlasers mit der hohen optischen Bestrahlungsstärke und dem großen Beleuchtungsbereich von Blitzlampen. Darüber hinaus kann die Erwärmung auch strukturiert vorgenommen werden, da einzelne Bereiche des VCSEL-Arrays unabhängig voneinander angesteuert werden können. Dieser neue Freiheitsgrad ermöglicht die Entwicklung ganz neuer thermografischer ZfP-Verfahren.


*Correspondence Address, Dr. Mathias Ziegler, Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany, E-mail:

Mathias Ziegler (Dr. rer. nat.), born 1977, received his diploma in 2004 and his Dr. rer. nat. in physics in 2009, from the Humboldt-University Berlin and the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy, Berlin, Germany. After working in the field of semiconductor physics, spectroscopy and photonics towards the development of short-wavelength quantum cascade lasers and high-power diode laser bars, his current research at Bundesanstalt für Materialforschung und – prüfung (BAM) in Berlin is focused on the development of active thermographic testing techniques for microscopic and macroscopic applications, in particular using lasers.

Erik Thiel (Dipl.-Ing.), born 1981, received his diploma degree in mechatronic engineering from the TU Dresden, Germany in 2009. Afterwards, he started work at W. O. M. GmbH as part of the photonic research group, as a system engineer for the 2PM FlySCAN technology. He left the company in order to work on his PhD in the field of advanced thermographic testing at Bundesanstalt für Materialforschung und – prüfung (BAM) in Berlin.

Taarna Studemund (B. Eng.), born 1995, studied applied physics – medical engineering at Beuth University of Applied Sciences Berlin. She started work at Bundesanstalt für Materialforschung und – prüfung (BAM) in Berlin in 2013 with thermographic testing as her main subject. In 2017 she wrote her bachelor thesis about characterizing a VCSEL array light source for crack detection with a new method of thermographic testing. After that she started her master education in applied physics – medical engineering


References

1 C.Maierhofer, M.Röllig, R.Krankenhagen, P.Myrach: Comparison of quantitative defect characterization using pulse-phase and lock-in thermography, Applied Optics, Vol. 55 (2016), No. 34, pp. D76D8610.1364/Ao.55.000d76Suche in Google Scholar PubMed

2 R.Krankenhagen, C.Maierhofer: Measurement of the radiative energy output of flash lamps by means of thermal thin probes, Infrared Physics & Technology, Vol. 67 (2014), pp. 36337010.1016/j.infrared.2014.07.012Suche in Google Scholar

3 D. P.Almond, P. M.Patel, Photothermal Science and Techniques, (1996), Chapman & Hall: LondonSuche in Google Scholar

4 DIN EN 15042-2: 2006, Schichtdickenmessung und Charakterisierung von Oberflächen mittels Oberflächenwellen, Teil 2: Leitfaden zur photothermischen Schichtdickenmessung, (2006)Suche in Google Scholar

5 M.Ziegler, P.Myrach, B.Neding: Wärmebehandlung und zerstörungsfreie Prüfung: Oberflächenrisse mit der Laser-Thermografie finden, HTM Journal of Heat Treatment and Materials, Vol. 70 (2015), No. 4, pp. 19019510.3139/105.110264Suche in Google Scholar

6 T.Li, D. P.Almond, D. A. S.Rees: Crack imaging by scanning laser-line thermography and laser-spot thermography, Measurement Science and Technology, Vol. 22 (2011), No. 3, p. 035701 10.1088/0957-0233/22/3/035701Suche in Google Scholar

7 M.Ziegler, M.Lucht, C.Maierhofer, Vorrichtung zur thermografischen Prüfung mittels Hochleistungs-LED-Quelle, DE Patent DE 10 2012 103 975, May 07, (2012)Suche in Google Scholar

8 E.Thiel, M.Kreutzbruck, M.Ziegler: Laser-projected photothermal thermography using thermal wave field interference for subsurface defect characterization, Applied Physics Letters, Vol. 109 (2016), No. 12, p. 12350410.1063/1.4963139Suche in Google Scholar

9 Laser Technik Journal: Philips Photonics Wins Innovation Award Laser Technology 2016, Laser Technik Journal, Vol. 13 (2016), No. 4, pp. 162010.1002/latj.201690035Suche in Google Scholar

10 A.Pruijmboom, R.Apetz, R.Conrads, C.Deppe, G.Derra, S.Gronenborn, J. S.Kolb, H.Moench, F.Ogiewa, P.Pekarski, J.Pollmann-Retsch, U.Weichmann, X.Gu, M.Miller: Vertical- cavity surface emitting laser-diodes arrays expanding the range of high-power laser systems and applications, Journal of Laser Applications, Vol. 28 (2016), No. 3, p. 03200510.2351/1.4946806Suche in Google Scholar

11 P.Myrach, F.Jonietz, D.Meinel, H.Suwala, M.Ziegler: Calibration of thermographic spot weld testing with X-ray computed tomography, Quantitative InfraRed Thermography Journal, Vol. 14 (2017), No. 1, pp. 12213110.1080/17686733.2017.1281554Suche in Google Scholar

12 A.Gleiter, C.Spiessberger, G.Busse, D. O.Thompson, D. E.Chimenti: Phase angle thermography for depth resolved defect characterization, AIP Conference Proceedings, (2009), pp. 52653210.1063/1.3114300Suche in Google Scholar

13 E.Thiel, M.Ziegler: Subsurface defect localization by structured heating using laser projected photothermal thermography, J Vis Exp, Vol. 123 (2017), p. e5573310.3791/55733Suche in Google Scholar PubMed PubMed Central

14 N. W.Pech-May, A.Oleaga, A.Mendioroz, A. J.Omella, R.Celorrio, A.Salazar: Vertical cracks characterization using lock-in thermography: I infinite cracks, Measurement Science and Technology, Vol. 25 (2014), No. 11, p. 11560110.1088/0957-0233/25/11/115601Suche in Google Scholar

Published Online: 2018-07-13
Published in Print: 2018-07-16

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
  5. Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
  6. Tensile strength of 3D printed materials: Review and reassessment of test parameters
  7. Numerical calculation of stress concentration of various subsurface and undercutting pit types
  8. Chemical composition of chosen phase constituents in austempered ductile cast iron
  9. Investigation of initial yielding in the small punch creep test
  10. Optimization and characterization of friction surfaced coatings of ferrous alloys
  11. Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
  12. In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
  13. Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
  14. Thermography using a 1D laser array – From planar to structured heating
  15. Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
  16. Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
  17. High temperature compressive behavior of three-dimensional five-directional braided composites
  18. Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
  19. Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111209/html
Button zum nach oben scrollen