Startseite Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites

  • Sıddıka Mertdinç , Emre Tekoğlu , Duygu Ağaoğulları und M. Lütfi Öveçoğlu
Veröffentlicht/Copyright: 13. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Al-Si metal matrix composites have generally been manufactured using casting methods. Powder metallurgy has been used as an alternative manufacturing technique to obtain more homogeneous and segregation-free products. In this study, 2 wt.-% TiB2 particle reinforced Al-7 wt.-% Si composites were manufactured using high energy ball milling, cold pressing (at 450 MPa) and pressureless sintering (at 570 °C for 2 h under Ar flow) techniques. The effects of different milling processes, such as mechanical alloying at room temperature and/or cryomilling in an isolated polycarbonate cylinder soaked in liquid nitrogen or sequential milling, on the Al-7 wt.-% Si-2 wt.-% TiB2 powders and corresponding bulk products were investigated. The microstructural, physical and mechanical properties of the composites sintered from the mechanically alloyed, mechanically alloyed and cryomilled, and sequentially milled powders were significantly improved as compared with those of as-blended ones. The highest density, the highest microhardness and the lowest wear rate were obtained in a composite sintered from mechanically alloyed and cryomilled powders at 92.38 %, 214.14 ± 41.17 HV and 3.8 × 10−3 mm3·N−1 × m−1, respectively.

Kurzfassung

Al-Si-Metallmatrixkomposite werden generell mittels Gießprozessen hergestellt. Die Pulvermetallurgie wird als alternativer Herstellungsprozess eingesetzt, um homogenere und ausscheidungsfreie Produkte zu erhalten. In der diesem Beitrag zugrunde liegenden Studie wurden mit 2 wt.-% TiB2-Partikel verstärkte Al-7 wt.-% Si Komposite hergestellt, indem die Techniken des Hochenergie-Kugelmahlens, des Kaltpressens (bei 450 MPa) und des drucklosen Sinterns (bei 570 °C für 2 h unter Ar-Schutzgas) angewandt wurden. Die Auswirkungen verschiedener Mahlprozesse, wie dem mechanischen Legieren bei Raumtemperatur und/oder dem Kryomahlen in einem isolierten Plykarbonatzylinder unter flüssigem Stickstoff oder das sequentielle Mahlen, auf die Al-7 wt.-% Si-2 wt.-% TiB2 Pulver und die entsprechenden Massenprodukte wurden untersucht. Die mikrostrukturellen, physikalischen und mechanischen Eigenschaften der Komposite, die aus den mechanisch legierten und kryogemahlenen sowie den sequentiell gemahlenen Pulvern gesintert wurden, wurden im Vergleich zu denen des Gemischten significant verbessert. Die höchste Dichte, die höchste Mikrohärte und die geringste Verschleißrate ergaben sich für die Komposite, die aus den mechanisch legierten und kryogesinterten Pulvern hergestellt wurden und zwar mit entsprechend 92.38 %, 214.14 ± 41.17 HV und 3.8 × 10−3 mm3 × N−1 × m−1.


*Correspondence Address, Dr. Duygu Ağaoğulları, Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey, E-mail:

M.Sc. Sıddıka Mertdinç, born 1991, received her B.Sc. degrees in 2014 in Chemical Engineering and Metallurgical and Materials Engineering at the Istanbul Technical University (ITU), Turkey. She received her M.Sc. degree in 2016 in the Materials Science and Engineering Department at ITU, and has continued her Ph.D. education at the same location. She has been working as a research assistant since 2015.

M.Sc. Emre Tekoğlu, born 1988, received his B.Sc. degree in 2011 in Metallurgical and Materials Engineering at Sakarya University, Turkey. He received his M.Sc. degree in 2015 in the Materials Science and Engineering Department at ITU, Istanbul and has continued his Ph.D. education at the same location., He has been working as a research assistant since 2014.

Ph.D. Duygu Ağaoğulları, born 1982, received her M.Sc. degree in 2007 and Ph.D. degree in 2014 in the Materials Science and Engineering Department at ITU, Istanbul, Turkey. She worked as a research assistant between 2005 and 2013, and has been affiliated as a research scientist since 2013 at ITU. She worked as a postdoctoral scholar in the Materials Science and Engineering Department at Stanford University, USA between 2014 and 2015. She has participated as a researcher/scholar in 14 scientific projects.

Prof. Dr. M. Lütfi Öveçoğlu, born 1957, received his M.Sc. and Ph.D. degrees in Materials Science and Engineering from Stanford University, USA in 1984 and 1987, respectively. He has been affiliated with the Department of Metallurgical and Materials Engineering at Istanbul Technical University since 1990. He is the founder and technical director of Particle Materials Laboratories (PML), a cluster of 9 laboratories at ITU, Istanbul, Turkey.


References

1 J.Torralba, C.da Costa, F.Velasco: P/M aluminium matrix composites: an overview, Journal of Materials Processing Technology133 (2003), No. 1–2, pp. 20320610.1016/S0924-0136(02)00234-0Suche in Google Scholar

2 M.Surappa: Aluminium matrix composites: challenges and opportunities, Sadhana28 (2003), No. 1–2, pp. 31933410.1007/BF02717141Suche in Google Scholar

3 R.Zheng, F.Ma, W.Xiao, K.Ameyama, C.Ma: Achieving enhanced strength in ultrafine lamellar structured Al2024 alloy via mechanical milling and spark plasma sintering, Materials Science and Engineering A687 (2017), pp. 15516310.1016/j.msea.2017.01.060Suche in Google Scholar

4 Z.Cai, C.Zhang, R.Wang, C.Peng, K.Qiu, Y.Feng: Preparation of Al-Si alloys by a rapid solidification and powder metallurgy route, Materials & Design87 (2015), pp. 996100210.1016/j.matdes.2015.08.106Suche in Google Scholar

5 M.Warmuzek: Aluminum-Silicon Casting Alloys: Atlas of Microfractographs, ASM International, Materials Park, OH, USA (2004)Suche in Google Scholar

6 S.Kumar, M.Chakraborty, V. SubramanyaSarma, B. S.Murty: Tensile and wear behaviour of in situ Al-7Si/TiB2 particle composites, Wear265 (2008), No. 1–2, pp. 13414210.1016/j.wear.2007.09.007Suche in Google Scholar

7 Ö.Balcı, D.Aǧaoǧulları, H.Gökçe, İ.Duman, M. L.Öveçoǧlu: Influence of TiB2 particle size on the microstructure and properties of Al matrix composites prepared via mechanical alloying and pressureless sintering, Journal of Alloys and Compounds586 (2014), No. 1, pp. S78S8410.1016/j.jallcom.2013.03.007Suche in Google Scholar

8 D.Ağaoğulları, H.Gökçe, A.Genç, İ.Duman, M. L.Öveçoğlu, Characterization of mechanically alloyed and sintered ZrC particle reinforced Al matrix composites, METAL 2010: 19th International Metallurgical and Materials Conference Proceedings, Tanger, Czech Republic (2010), pp. 702708Suche in Google Scholar

9 Ö.Balcı, K. G.Prashanth, S.Scudino, D.Ağaoğulları, İ.Duman, M. L.Öveçoğlu, V.Uhlenwinkel, J.Eckert: Effect of milling time and the consolidation process on the properties of Al matrix composites reinforced with Fe-based glassy particles, Metals5 (2015), No. 2, pp. 66968510.3390/met5020669Suche in Google Scholar

10 P. S.Bains, S. S.Sidhu, H. S.Payal: Fabrication and machining of metal matrix composites: a review, Materials and Manufacturing Processes31 (2016), No. 5, pp. 55357310.1080/10426914.2015.1025976Suche in Google Scholar

11 Y.Nishida: Introduction to Metal Matrix Composites: Fabrication and Recycling, Springer, Tokyo, Japan (2013)10.1007/978-4-431-54237-7Suche in Google Scholar

12 S.Chao, J.Goldsmith, D.Banerjee: Titanium diboride composite with improved sintering characteristics, International Journal of Refractory Metals and Hard Materials49 (2015), pp. 31431910.1016/j.ijrmhm.2014.06.008Suche in Google Scholar

13 E. MohammadSharifi, F.Karimzadeh, H.Enayati: Synthesis of titanium diboride reinforced alumina matrix nanocomposite by mechanochemical reaction of Al-TiO2-B2O3, Journal of Alloys and Compounds502 (2010), No. 2, pp. 50851210.1016/j.jallcom.2010.04.207Suche in Google Scholar

14 B.Shahbahrami, F. GolestaniFard, A.Sedghi: The effect of processing parameters in the carbothermal synthesis of titanium diboride powder, Advanced Powder Technology23 (2012), No. 2, pp. 23423810.1016/j.apt.2011.03.001Suche in Google Scholar

15 S.Suresh, N.Shenbag, V.Moorthi: Aluminium-titanium diboride (Al-TiB2) metal matrix composites: challenges and opportunities, Procedia Engineering38 (2012), pp. 899710.1016/j.proeng.2012.06.013Suche in Google Scholar

16 H.Ding, X.Liu, J.Nie: Study of preparation of TiB2 by TiC in Al melts, Materials Characterization63 (2012), pp. 566210.1016/j.matchar.2011.10.006Suche in Google Scholar

17 A.Tan, J.Teng, X.Zeng, D.Fu, H.Zhang: Fabrication of aluminium matrix hybrid composites reinforced with SiC microparticles and TiB2 nanoparticles by powder metallurgy, Powder Metallurgy60 (2017), No. 1, pp. 667210.1080/00325899.2016.1274816Suche in Google Scholar

18 J.Hashim, L.Looney, M. S. J.Hashmi: Metal matrix composites: production by the stir casting method, Journal of Materials Processing Technology92–93 (1999), pp. 1710.1016/S0924-0136(99)00118-1Suche in Google Scholar

19 K. U.Kainer: Metal Matrix Composites: Custom-made Materials for Automotive and Aerospace Engineering, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2006)10.1002/3527608117Suche in Google Scholar

20 M. KarbalaeiAkbari, H. R.Baharvandi, K.Shirvanimoghaddam: Tensile and fracture behavior of nano/micro TiB2 particle reinforced casting A356 aluminum alloy composites, Materials & Design66 (2015), pp. 15016110.1016/j.matdes.2014.10.048Suche in Google Scholar

21 H.Kaftelen, N.Ünlü, G.Göller, M. L.Öveçoğlu, H.Henein: Comparative processing-structure-property studies of Al–Cu matrix composites reinforced with TiC particles, Composites Part A: Applied Science and Manufacturing42 (2011), No. 7, pp. 81282410.1016/j.compositesa.2011.03.016Suche in Google Scholar

22 L., M. O.Lai: Mechanical Alloying; Kluwer Academic Publishers, Boston, MA, USA, (1998)10.1007/978-1-4615-5509-4Suche in Google Scholar

23 C.Suryanarayana: Mechanical alloying and milling, Progress in Materials Science46 (2001), No. 1–2, pp. 118410.1016/S0079-6425(99)00010-9Suche in Google Scholar

24 M. S.El-Eskandarany: Mechanical Alloying: Nanotechnology, Materials Science and Powder Metallurgy, 2nd Ed., Elsevier, Amsterdam (2015)Suche in Google Scholar

25 T.He, X.He, P.Tang, D.Chu, X.Wang, P.Li: The use of cryogenic milling to prepare high performance Al2009 matrix composites with dispersive carbon nanotubes, Materials & Design114 (2016), pp. 37338210.1016/j.matdes.2016.11.008Suche in Google Scholar

26 S. H.Back, G. H.Lee, S.Kang: Effect of cryomilling on particle size and microstrain in a WC-Co alloy, Materials Transactions46 (2005), No. 1, pp. 10511010.2320/matertrans.46.105Suche in Google Scholar

27 W.Reitz, J.Pendray: Cryoprocessing of materials: a review of current status, Materials and Manufacturing Processes16 (2001), No. 6, pp. 82984010.1081/AMP-100108702Suche in Google Scholar

28 M. H.Enayati: Nanocrystallization of Al powder by cryomilling process, KONA Powder and Particle Journal34 (2017), pp. 20721210.14356/kona.2017006Suche in Google Scholar

29 J.Milligan, R.Vintila, M.Brochu: Nanocrystalline eutectic Al-Si alloy produced by cryomilling, Materials Science and Engineering A508 (2009), No. 1–2, pp. 434910.1016/j.msea.2008.12.017Suche in Google Scholar

30 B. T.Al-Mosawi, D.Wexler, A.Calka: Characterization and mechanical properties of α-Al2O3 particle reinforced aluminium matrix composites, synthesized via uniball magneto-milling and uniaxial hot pressing, Advanced Powder Technology28 (2017), No. 3, pp. 1054106410.1016/j.apt.2017.01.011Suche in Google Scholar

31 H. B. MichaelRajan, S.Ramabalan, I.Dinaharan, S. J.Vijay: Synthesis and characterization of in situ formed titanium diboride particle reinforced AA7075 aluminum alloy cast composites, Materials & Design44 (2013), pp. 43844510.1016/j.matdes.2012.08.008Suche in Google Scholar

32 Y.Han, X.Liu, X.Bian: In situ TiB2 particle reinforced near eutectic Al-Si alloy composites, Composites Part A: Applied Science and Manufacturing33 (2002), No. 3, pp. 43944410.1016/S1359-835X(01)00124-5Suche in Google Scholar

33 H.Ahamed, V. S.Kumar: A comparative study on the milling speed for the synthesis of nano-structured Al 6063 alloy powder by mechanical alloying, Journal of Minerals and Materials Characterization and Engineering10 (2011), No. 6, pp. 50751510.4236/jmmce.2011.106038Suche in Google Scholar

34 F.Zhou, D.Witkin, S. R.Nutt, E. J.Lavernia: Formation of nanostructure in Al produced by a low-energy ball milling at cryogenic temperature, Materials Science Engineering A375–377 (2004), pp. 91792110.1016/j.msea.2003.10.235Suche in Google Scholar

35 K. D.Woo, D. L.Zhang: Fabrication of Al-7wt%Si-0.4wt%Mg/SiC nanocomposite powders and bulk nanocomposites by high energy ball milling and powder metallurgy, Current Applied Physics, 4 (2004), No. 2–4, pp. 17517810.1016/j.cap.2003.11.002Suche in Google Scholar

36 J.Sahoo, S.Sahoo, H.Sutar, B.Sarangi, Wear behavior of Al-Si alloy based metal matrix composite reinforced with TiB2, IOP Conference Series: Materials Science and Engineering178 (2017), pp. 01202510.1088/1757-899X/178/1/012025Suche in Google Scholar

37 R.Zheng, X.Hao, Y.Yuan, Z.Wang, K.Ameyama, C.Ma: Effect of high volume fraction of B4C particles on the microstructure and mechanical properties of aluminum alloy based composites, Journal of Alloys and Compounds576 (2013), pp. 29129810.1016/j.jallcom.2013.04.141Suche in Google Scholar

38 J.Milligan, R.Gauvin, M.Brochu: Consolidation of cryomilled Al-Si using spark plasma sintering, Philosophical Magazine93 (2013), No. 19, pp. 2445246410.1080/14786435.2013.777816Suche in Google Scholar

39 J. U.Ejiofor, R. G.Reddy: Developments in the processing and properties of particle Al-Si composites, Journal of Materials49 (1997), No. 11, pp. 313710.1007/s11837-997-0008-51Suche in Google Scholar

Published Online: 2018-07-13
Published in Print: 2018-07-16

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
  5. Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
  6. Tensile strength of 3D printed materials: Review and reassessment of test parameters
  7. Numerical calculation of stress concentration of various subsurface and undercutting pit types
  8. Chemical composition of chosen phase constituents in austempered ductile cast iron
  9. Investigation of initial yielding in the small punch creep test
  10. Optimization and characterization of friction surfaced coatings of ferrous alloys
  11. Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
  12. In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
  13. Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
  14. Thermography using a 1D laser array – From planar to structured heating
  15. Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
  16. Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
  17. High temperature compressive behavior of three-dimensional five-directional braided composites
  18. Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
  19. Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111207/html?lang=de
Button zum nach oben scrollen