Startseite Investigation of initial yielding in the small punch creep test
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of initial yielding in the small punch creep test

  • Betül Gülçimen Çakan und Ali Durmuş
Veröffentlicht/Copyright: 13. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Unlike the uniaxial creep test results, the interpretation of small punch (SP) test results is not straightforward due to the complex deformation behavior of SP specimens. Accordingly, the reliability of correlations of SP creep test results with corresponding uniaxial tests is still not clear. One crucial point is that the initial yielding at the beginning of an SP creep test results in the hardening of the material before creep sets in and is thought to affect the creep properties. In this study, to clarify this effect, first an accurate numerical model of the SP creep test has been developed following which this model was used to study the influence of test parameters such as specimen thickness, punch diameter and the radius of the receiving hole on the initial yielding. Varying these parameters changes the deformation mechanisms and thus has a strong effect on the deflection-time curves along with the amount of initial plastic deformation. It was observed that decreasing specimen thickness and the punch diameter increased the initial yielding. Conversely, increasing the radius of the receiving hole resulted in higher initial yielding.

Kurzfassung

Gegenüber den Ergebnissen einachsiger Kriechversuche ist die Interpretation von Ergebnissen aus Zeitstandversuchen mit Einschlagmarken (Small Punch (SP) Creep Test) aufgrund des komplexen Deformationsverhaltens der SP-Proben nicht ohne weiteres möglich. Entsprechend ist die Zuverlässigkeit von Korrelationen zwischen Ergebnissen aus dem SP-Kriechversuch mit uniaxialen Zeitstandversuchen noch immer nicht geklärt. Ein kritischer Punkt ist hierbei, dass die Anfangsdehnung beim SP-Kriechversuch zu einer Verfestigung des Werkstoffes führt, bevor das Kriechen einsetzt, und es wird angenommen, dass dies die ermittelten Kriecheigenschaften beeinflusst. In der diesem Beitrag zugrunde liegenden Studie wurde zur Klärung dieses Effektes zunächst ein akkurates Finite-Elemente-Modell des SP-Kriechversuches entwickelt und danach dieses Modell verwandt, um den Einfluss der Versuchsparameter wie Probendicke, Dorndurchmesser und Radius des dadurch versachten Loches auf die Anfangsdehnung zu ermitteln. Eine Variation dieser Parameter verändert die Deformationsmechanismen und hat somit einen starken Einfluss auf die Verformungs-zeitkurven im Zusammenhang mit der anfänglichen plastischen Verformung. Es wurde beobachtet, dass abnehmende Probendicke und Dorndurchmesser die Anfangsdehnung erhöhen. Umgekehrt führt ein zunehmender Radius des resultierenden Loches zu einer höheren Anfangsdehnung.


*Correspondence Address, Assoc. Prof. Dr. Ali Durmuş, Department of Mechanical Engineering, Faculty of Engineering, University of Uludağ, 16059, Bursa, Turkey, E-mail:

Dr. Betül G. Çakan, born in 1983, received her BSc, MSc and PhD degrees in Mechanical Engineering from Uludağ University in Bursa, Turkey, in 2005, 2008 and 2013, respectively. She worked as a visiting scientist at JRC-IET (Joint Research Centre – Institute for Energy and Transport) in Petten, the Netherlands in 2010 and 2012. Her research areas are mechanics of materials, materials testing, fracture mechanics, creep mechanics and computational modeling of material behaviors. Currently, she is a research assistant in the Mechanical Engineering Department at Uludağ University, Turkey.

Associate Prof. Dr. Ali Durmuş, born in 1977, received his BSc, MSc and PhD degrees in Mechanical Engineering from Uludağ University in Bursa, Turkey, in 1998, 2000 and 2004, respectively. His research areas are strength of materials, materials testing, elastomeric materials, crash test, fracture mechanics and creep mechanics. Currently, he is an associate professor in the Mechanical Engineering Department at Uludağ University, Turkey.


References

1 J.Kameda, O.Buck: Evaluation of the ductile-to-brittle transition temperature shift due to temper embrittlement and neutron irradiation by means of a small-punch test, Materials Science Engineering A83 (1986), pp. 293810.1016/0025-5416(86)90171-0Suche in Google Scholar

2 X.Mao, H.Takahashi: Development of a further miniaturized specimen of 3 mm diameter for TEM disk (Φ 3 mm) Small punch tests, Journal of Nuclear Materials150 (1987), pp. 425210.1016/0022-3115(87)90092-4Suche in Google Scholar

3 K.Milicka, F.Dobes: Small punch testing of P91 steel, International Journal of Pressure Vessels and Piping83 (2006), pp. 62563410.1016/j.ijpvp.2006.07.009Suche in Google Scholar

4 B.Gülçimen, A.Durmuş, S.Ülkü, R. C.Hurst, K.Turba, P.Hähner: Mechanical characterisation of a P91 weldment by means of small punch fracture testing, International Journal of Pressure Vessels and Piping105–106 (2013), pp. 283510.1016/j.ijpvp.2013.02.005Suche in Google Scholar

5 B.Gülçimen, P.Hähner: Determination of creep properties of a P91 weldment by small punch testing and a new evaluation approach, Materials Science Engineering A588 (2013), pp. 12513110.1016/j.msea.2013.09.029Suche in Google Scholar

6 L.Kander, D.Mikulas: Evaluation of Mechanical properties of composite coatings using small punch test method, Proc. of the 1st International Conference SSTT, Determination of Mechanical Properties by Small Punch Test and Other Miniature Testing Techniques, Ostrava, Chech Republic. Metallurgical J. (2010), pp. 110114Suche in Google Scholar

7 K.Turba, R. C.Hurst, P.Hähner: Anisotropic mechanical properties of the MA956 ODS steel characterized by the small punch testing technique, Journal of Nuclear Materials428 (2012), pp. 768110.1016/j.jnucmat.2011.08.042Suche in Google Scholar

8 F.Dobeš, K.Milička, M.Besterci: Small Punch Testing of Al-4 vol. % Al4C3 Composite in Creep Conditions, High Temperature Materials and Processes26 (2011), pp. 19320010.1515/HTMP.2007.26.3.193Suche in Google Scholar

9 CEN Technical Report CWA 15627: Small punch test method for metallic materials, European Committee for Standardization, Brussels (2006)Suche in Google Scholar

10 D.Blagoeva: Development of a Residual Lifetime Prediction Methodology for Creep and Fracture Behaviour of Ferritic-Martensitic Steels using Small-Punch Testing Technique, Doctoral Thesis, Università di Pisa, Italy (2009)Suche in Google Scholar

11 B.Ule, T.Sustar: The effect of initial hot plastic deformation on creep behaviour of 12 Cr steel specimens in small punch tests, Materials at High Temperatures18 (2001), pp. 16317010.1179/mht.2001.018Suche in Google Scholar

12 P.Dymacek, K.Milicka: Creep small-punch testing and its numerical simulations, Materials Science Engineering A510–511 (2009), pp. 44444910.1016/j.msea.2008.06.053Suche in Google Scholar

13 B.Gülçimen: Determination of creep and fracture properties of P91 steel by small punch testing, Doctoral Thesis Uludağ University, Turkey (2013), (in Turkish).10.1016/j.msea.2013.09.029Suche in Google Scholar

14 ABAQUS Users Manual, Version 6.10-1, Dassault Systemes Simulia Corp., Providence, RI, USA (2010)Suche in Google Scholar

15 F.Cortellino, W.Sun, J. P.Rouse, B.Cacciapuoti, T. H.Hyde: Experimental and numerical analysis of initial plasticity in P91 steel small punch creep samples, Experimental Mechanics57 (2017), pp. 1193121210.1007/s11340-017-0296-9Suche in Google Scholar PubMed PubMed Central

16 T.Fujioka, N.Atsumi, S.Komazaki, T.Kobayashi, I.Nonaka: Finite element analysis of small punch/small punch creep test specimens of 2.25Cr-1Mo steel performed in the Japanese research group, Proc. of the 1st International Conference SSTT, Determination of Mechanical Properties by Small Punch Test and Other Miniature Testing Techniques, Ostrava, Chech Republic. Metallurgical J. (2010), pp. 161173Suche in Google Scholar

17 P. C.Zhai, T.Hashida, S.Komazaki, Q. J.Zhang: Numerical analysis for small punch creep tests by finite-element method, Journal of Testing and Evaluation32 (2004), pp. 29830310.1520/JTE12250.Suche in Google Scholar

Published Online: 2018-07-13
Published in Print: 2018-07-16

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
  5. Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
  6. Tensile strength of 3D printed materials: Review and reassessment of test parameters
  7. Numerical calculation of stress concentration of various subsurface and undercutting pit types
  8. Chemical composition of chosen phase constituents in austempered ductile cast iron
  9. Investigation of initial yielding in the small punch creep test
  10. Optimization and characterization of friction surfaced coatings of ferrous alloys
  11. Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
  12. In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
  13. Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
  14. Thermography using a 1D laser array – From planar to structured heating
  15. Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
  16. Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
  17. High temperature compressive behavior of three-dimensional five-directional braided composites
  18. Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
  19. Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111206/html
Button zum nach oben scrollen