Startseite Chemical composition of chosen phase constituents in austempered ductile cast iron
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Chemical composition of chosen phase constituents in austempered ductile cast iron

  • Małgorzata Warmuzek und Adelajda Polkowska
Veröffentlicht/Copyright: 13. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

A procedure a for multi-step characterization of microstructural features observed in austempered ductile cast iron (ADI), was proposed based on the results of microscopic examinations, a local X-ray microanalysis and EBSD-based crystallographic evaluation. The polyphase complex microregions having an increased content of alloying elements such as Mo, Cr, Mn in comparison with that estimated for the alloy's matrix, were observed in the examined material. As a first step, a classification of microregions was performed based on their morphology and specific distribution in the alloy's microstructure. Subsequently, by using established criteria for the selection of microanalysis data for a further microregions discrimination, several groups of particles characterized by a particular ratio of the alloying elements, were distinguished. The particles were classified based on the specific range of the carbide stabilizers concentration revealed, then were ascribed in situ to two types of carbides identified by means of EBSD analysis. Furthermore, the effect of heat treatment conditions on the evolution of the chemical composition of the microregions was examined experimentally and discussed.

Kurzfassung

In dem vorliegenden Beitrag wird eine Prozedur für die mehrstufige Charakterisierung der mikrostrukturellen Merkmale in duktilem Gusseisen (ADI) vorgeschlagen, die auf den Ergebnissen mikroskopischer Untersuchungen, lokaler Röntgenmikroanalyse und EBSD-basierter kristallografischer Evaluation basieren. In dem untersuchten Werkstoff wurden mehrphasige komplexe Mikroregionen mit einem zunehmenden Gehalt an Legierungselementen, wie Mo, Cr, Mn, im Vergleich zu dem Anteil, wie er für die Legierungsmatrix abgeschätzt wurde, beobachtet. Im ersten Schritt wurde eine Klassifizierung der Mikroregionen basierend auf ihrer Morphologie und ihrer spezifischen Verteilung in der Mikrostruktur der Legierung ausgeführt. Indem die etablierten Kriterien für die Selektion der Mikroanalysedaten für die weitere Mikrostrukturunterscheidung herangezogen wurden, wurden anschließend mehrere Gruppen von Partikeln charakterisiert und anhand des spezifischen Verhältnisses an Legierungselementen unterschieden. Die Partikel wurden anhand des bestimmten Konzentrationsbereiches an Karbidstabilisierern klassifiziert und dann in-situ zwei Typen von Karbiden zugeschrieben, die mittels EBSD-Analyse identifiziert wurden. Darüber hinaus wurde die Auswirkung der Wärmebehandlungsbedingungen auf die Entwicklung der chemischen Zusammensetzung der Mikroregionen experimentell untersucht und diskutiert.


*Correspondence Address, Prof. Dr. Małgorzata Warmuzek, Foundry Research Institute, Zakopiańska 73, 30-418 Kraków, Poland, E-mail:

Prof. Dr. Małgorzata Warmuzek, born in 1951, graduated from AGH University of Science and Technology in Cracow, Poland in 1974. She obtained a PhD degree in 1982 and DSc degree in 2014. She works as Professor at the Foundry Research Institute; Cracow, Poland. Her professional focus is mainly concerned with microscopic examinations (LM, SEM) and local methods of materials microstructure characterization (EDS, EBSD).

Assistant Prof. Dr. Adelajda Polkowska, born in 1983, graduated from the Faculty of Non-Ferrous Metals of AGH University of Science and Technology in Cracow, Poland in 2007. In 2011, she finished her PhD thesis at the same Faculty. Subsequently, she assumed the position of Professor Assistant there. Currently, she works as a Professor Assistant (Senior Researcher) at the Foundry Research Institute in Cracow.


References

1 A.Galarreta, R. E.Boeri, J. A.Sikora: Free ferrite in pearlite ductile iron – morphology and its influence on mechanical properties, Cast Metals9 (1997), No. 6, pp. 35335710.1080/13640461.1997.11819677Suche in Google Scholar

2 E.Guzik, M.Sokolnicki, A.Nowak: Effect of heat treatment parameters on the toughness of unalloyed ausferritic ductile iron, Archives of Foundry Engineering16 (2016), No. 2, pp. 798410.1515/afe-2016-0030Suche in Google Scholar

3 N.Darwish, R.Elliott: Austempering of low manganese ductile irons, Materials Science and Technology9 (1993), No. 7, pp. 57258510.1179/mst.1993.9.7.572Suche in Google Scholar

4 D.Rajnovic, O.Eric, L.Sidjanin: The standard processing window of alloyed ADI materials, Kovove Materialy50 (2012), No. 3, pp. 19920810.4149/km20123199Suche in Google Scholar

5 M.Lagarde, A.Basso, R.Dommarco, J. A.Sikora: Development and characterization of a new type of ductile iron with a novel multi-phase microstructure, ISIJ International51 (2011), No. 4, pp. 64565010.2355/isijinternational.51.645Suche in Google Scholar

6 G.Gumienny: Bainitic nodular cast iron with carbides obtaining with use of Inmold method, Archives of Foundry Engineering9 (2009), No. 3, pp. 243248Suche in Google Scholar

7 X.Sun, Y.Wang, D. Y.Li: Modification of carbidic austempered ductile iron with nano ceria for improved mechanical properties and abrasive wear resistance, Wear301 (2013), No. S1–2, pp. 11612110.1016/j.wear.2012.12.018Suche in Google Scholar

8 P.Dangra, S.Patil, M.Harne: Effect of austenizing temperature on the wear properties of CADI, International Journal of Science and Engineering4 (2015), No. 1, pp. 235242Suche in Google Scholar

9 S. A.Patil, S. U.Pathak, A.Likhite: Development and wear analysis of carbidic austempered ductile iron (CADI), International Journal of Innovative Research in Science, Engineering and Technology3 (2014), No. 2, pp. 96529657Suche in Google Scholar

10 H. D.Rivero, J. A.García, E. CándidoAtlatenco, A. D.Basso: Effect of the ratio Mo/Cr in the precipitation and distribution of carbides in alloyed nodular iron, MRS Proceedings1485 (2012), pp. 11311810.1557/opl.2013.278Suche in Google Scholar

11 S.Pietrowski, G.Gumienny: Carbides in nodular cast iron with Cr and Mo, Archives of Foundry Engineering7 (2007), No. 3, pp. 223230Suche in Google Scholar

12 S.Pietrowski, G.Gumienny: Crystallization of nodular cast iron with carbides, Archives of Foundry Engineering8 (2008), No. 4, pp. 236240Suche in Google Scholar

13 N.Rahgozar, M.Nili-Ahmadabadi, F.Forghani: Development of high Mo carbide free thick section nodular cast iron by partial melting homogenization, Materials Science and Technology29 (2013), No. 11, pp. 1346135310.1179/1743284713Y.0000000279Suche in Google Scholar

14 M.Warmuzek, K.Regulski: A Procedure for in situ identification of the intermetallic altmsi phase precipitates in the microstructure of the aluminum alloys Practical Metallography48 (2011), No. 12, pp. 66068410.3139/147.110045Suche in Google Scholar

15 G.Gumienny: Carbidic bainitic and ausferritic ductile cast iron, Archives of Metallurgy and Materials58 (2013), No. 4, pp. 1053105810.2478/amm-2013-0125Suche in Google Scholar

16 S.Pietrowski, G.Gumienny: Microsegregation in nodular cast iron with carbides, Archives of Foundry Engineering12 (2012), No. 4, pp. 12713410.2478/v10266-012-0120-zSuche in Google Scholar

17 M.Sluiter: Phase stability of carbides and nitrides in steel, MRS Proceedings, 979 (2011) 10.1557/PROC-979-0979-HH14-03Suche in Google Scholar

18 J.Xie, N. X.Chen, L. D.Teng, S.Seetharaman: Atomistic study on the site preference and thermodynamic properties for Cr23-xFexC6, Acta Materialia53 (2005), No. 20, pp. 5305531210.1016/j.actamat.2005.07.039Suche in Google Scholar

19 J.Xie, J.Shen, N.Chen, S.Seetharaman: Site preference and mechanical properties of Cr23-xTxC6 and Fe21T2C6 (T = Mo, W), Acta Materialia54 (2006), No. 18, pp. 4653465810.1016/j.actamat.2006.03.059Suche in Google Scholar

20 J.Xie, L. D.Teng, N.Chen, S.Seetharaman: Atomistic simulation on the structural properties and phase stability for Cr23C6 and Mn23C6, Journal of Alloys and Compounds420 (2006), No. 1–2, pp. 26927210.1016/j.jallcom.2005.10.027Suche in Google Scholar

Published Online: 2018-07-13
Published in Print: 2018-07-16

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
  5. Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
  6. Tensile strength of 3D printed materials: Review and reassessment of test parameters
  7. Numerical calculation of stress concentration of various subsurface and undercutting pit types
  8. Chemical composition of chosen phase constituents in austempered ductile cast iron
  9. Investigation of initial yielding in the small punch creep test
  10. Optimization and characterization of friction surfaced coatings of ferrous alloys
  11. Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
  12. In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
  13. Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
  14. Thermography using a 1D laser array – From planar to structured heating
  15. Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
  16. Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
  17. High temperature compressive behavior of three-dimensional five-directional braided composites
  18. Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
  19. Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111205/html
Button zum nach oben scrollen