Startseite Numerical calculation of stress concentration of various subsurface and undercutting pit types
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Numerical calculation of stress concentration of various subsurface and undercutting pit types

  • Seçil Ekşi
Veröffentlicht/Copyright: 13. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, the stress concentration effect of single subsurface (D type) pit types and undercutting (E type) pit types with various pit depth and diameter has been investigated with respect to uniaxial loading by conducting a series of 3D stress analyses systematically. Finite element analyses have been conducted in order to determine the stress concentration factor of pits. Pit aspect ratio q/a and a/2c are the main parameters affecting the value of the stress concentration factor for subsurface types of pits. e/a and e/2c are also pit aspect ratios affecting the value of the stress concentration factor for undercutting types of pits. Some equations have been made to estimate the stress concentration factor depending on the geometrical parameters from the results of stress analyses. The stress concentration factor can be calculated using an equation obtained with a correlation coefficient (R2) of 0.993 for D types (subsurface) pits. The stress concentration factor can also be calculated using an equation obtained with a correlation coefficient (R2) of 0.995 for E types (subsurface) pits.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wurden die Auswirkungen auf die Spannungskonzentration von Korrosionslöchern des einfachen Typs unterhalb der Oberfläche (D Type) und des unterhöhlenden Typs (E Type) mit verschiedenen Lochdurchmessern und Lochtiefen unter uniaxialen Beanspruchungsbedingungen untersucht, indem systematisch eine Reihe von 3D-Spannungsnalysen durchgeführt wurde. Die Finite-Elemente-Analysen wurden durchgeführt, um den Spannungskonzentrationsfaktor der Löcher zu bestimmen. Die Pitgrößenverhältnisse q/a und a/2c stellen die hauptsächlichen Parameter dar, die den Spannungskonzentrationsfaktor bei unterhöhlenden Löchern beeinflussen. Aus den Ergebnissen der Analysen wurden einige Gleichungen entwickelt, um den Spannungskonzentrationsfaktor in Abhängigkeit von den geometrischen Parametern abschätzen zu können. Der Spannungskonzentrationsfaktor kann mit einem Korrelationskoeffizienten R2 von 0,993 für die D-Typen und 0,995 für die E-Typen der Löcher ermittelt werden.


*Correspondence Address, Assistant Professor Seçil Ekşi, Mechanical Engineering Department, Esentepe Campus, Sakarya University, 54187, Sakarya, Turkey, E-mail:

Asst. Prof. Seçil Ekşi, PhD, is an Assistant Professor in the Department of Mechanical Engineering at the Engineering Faculty, Sakarya University, Sakarya, Turkey. She received a BS degree and MS degree in Mechanical Engineering from Sakarya University, in 2004 and 2006, respectively, and a PhD degree in Mechanical Engineering also from Sakarya University in 2014. Her research interests include materials, mechanical Bbhavior of material, manufacturing, finite element method.


References

1 ASM International Handbook Committee, ASM Handbook – Corrosion, ASM International, Materials Park, Ohio, USA (1992)Suche in Google Scholar

2 M.Cerit, K.Genel, S.Eksi: Numerical investigation on stress concentration of corrosion pit, Engineering Failure Analysis16 (2009), pp. 2467247210.1016/j.engfailanal.2009.04.004Suche in Google Scholar

3 A.Rajabipour, R. E.Melchers: A numerical study of damage caused by combined pitting corrosion and axial stress in steel pipes, Corrosion Science76 (2013), pp. 29230110.1016/j.corsci.2013.07.002Suche in Google Scholar

4 L. K.Zhu, Y.Yan, L. J.Qiao, A. A.Volinsky, Stainless steel pitting and early-stage stress corrosion cracking under ultra-low elastic load, Corrosion Science77 (2013), pp. 36036810.1016/j.corsci.2013.08.028Suche in Google Scholar

5 D. A.Horner, B. J.Connolly, S.Zhou, L.Crocker, A.Turnbull: Novel images of the evolution of stress corrosion cracks from corrosion pits, Corrosion Science53 (2011), pp. 3466348510.1016/j.corsci.2011.05.050Suche in Google Scholar

6 A.Turnbull, D. A.Horner, B. J.Connolly: Challenges in modelling the evolution of stress corrosion cracks from pits, Engineering Fracture Mechanics76 (2009), pp. 63364010.1016/j.engfracmech.2008.09.004Suche in Google Scholar

7 R. M.Pidaparti, R. R.Patel: Correlation between corrosion pits and stresses in Al alloys, Materials Letter62 (2008), pp. 4497449910.1016/j.matlet.2008.08.013Suche in Google Scholar

8 Y.Huang, Y.Zhang, G.Liu, Q.Zhang, Ultimate strength assessment of hull structural plate with pitting corrosion damnification under biaxial compression, Ocean Engineering37 (2010), pp. 1503151210.1016/j.oceaneng.2010.08.001Suche in Google Scholar

9 A.Turnbull, L.Wright, L.Crocker, New insight into the pit-to-crack transition from finite element analysis of the stress and strain distribution around a corrosion pit Corrosion Science52 (2010), pp. 1492149810.1016/j.corsci.2009.12.004Suche in Google Scholar

10 M. Y.Bayoumi, A. A.İsmail, A. K. Abd ElLatif, Finite element analysis of stresses due to pitting of steel specimens under different cyclic bending stresses, Engineering Fracture Mechanics53 (1996), pp. 14115110.1016/0013-7944(95)00073-5Suche in Google Scholar

11 K.Genel: Environmental effect on the fatigue performance of bare and oxide coated 7075-T6 alloy, Engineering Failure Analysis32 (2013), pp. 24826010.1016/j.engfailanal.2013.03.020Suche in Google Scholar

12 K.Jones, D. W.Hoeppner: The interaction between pitting corrosion, grain boundaries, and constituent particles during corrosion fatigue of 7075-T6 aluminum alloy, International Journal of Fatigue31 (2009), pp. 68669210.1016/j.ijfatigue.2008.03.016Suche in Google Scholar

Published Online: 2018-07-13
Published in Print: 2018-07-16

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
  5. Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
  6. Tensile strength of 3D printed materials: Review and reassessment of test parameters
  7. Numerical calculation of stress concentration of various subsurface and undercutting pit types
  8. Chemical composition of chosen phase constituents in austempered ductile cast iron
  9. Investigation of initial yielding in the small punch creep test
  10. Optimization and characterization of friction surfaced coatings of ferrous alloys
  11. Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
  12. In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
  13. Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
  14. Thermography using a 1D laser array – From planar to structured heating
  15. Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
  16. Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
  17. High temperature compressive behavior of three-dimensional five-directional braided composites
  18. Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
  19. Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111204/html
Button zum nach oben scrollen