Startseite Tensile strength of 3D printed materials: Review and reassessment of test parameters
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Tensile strength of 3D printed materials: Review and reassessment of test parameters

  • Jim Floor , Bas van Deursen und Erik Tempelman
Veröffentlicht/Copyright: 13. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

3D printing, using material extrusion (a.k.a. FDM), is increasingly used for final parts, and not only prototypes. This increases research into printed material strength. For such research to be reproducible, many parameters must be controlled. Assessed here are several such parameters currently underappreciated in the literature: variation between printers, printing toolpath, void content, and bed placement. Through systematic testing (n = 780), the first three parameters are proven to be statistically significant. With these controls, the effect of layer height, print speed, nozzle temperature, and print orientation on strength as previously reported is accurately reproduced, and contradictory prior results regarding print orientation are explained. A single material was used: polylactic acid, benchmarked by injection molding and testing of specimens with comparable geometry to the printed specimens.

Kurzfassung

Die auf Materialextrusion basierende 3D-Drucktechnik, bekannt als Fused Deposition Modeling (FDM; deutsch: Schmelzschichtung), wird nicht nur für Prototypen, sondern vermehrt für Seriengebrauchsteile eingesetzt. Dies treibt die Forschung nach hohen Materialfestigkeiten im 3D-Druckverfahren an. Damit diese Forschung reproduzierbare Ergebnisse liefert, sind viele Parameter zu steuern. Bewertet wurden hier mehrere dieser Parameter, die aktuell in der betreffenden Fachliteratur unterschätzt werden, wie zum Beispiel die Variation zwischen einzelnen 3D-Druckern, der Werkzeugweg während des 3D-Druckens, der Anteil von Materialfehlerstellen und die 3D-Druckbettanordnung. Durch systematische Tests (n = 780) hat sich ergeben, dass die ersten drei Parameter statistisch relevant sind. Mit diesen Steuerungsgrößen kann die Auswirkung auf die Festigkeit bezogen auf Schichthöhe, Druckgeschwindigkeit, Temperatur an der Spritzdüse und Druckrichtung – wie vorher berichtet – akkurat reproduziert werden. Gegenteilige vorherige Ergebnisse bezogen auf die Druckrichtung werden erklärt. Für die Tests wurde ein einziges Material benutzt (PLA; Polylactide), die Ergebnisse wurden verglichen mit denen aus dem Spritzgussverfahren sowie aus Tests mit geometrisch vergleichbaren 3D-gedruckten Mustern.


*Correspondence Address, MSc Bas van Deursen, Manager hardware R&D Ultimaker BV, Watermolenweg 2, 4191PN Geldermalsen, The Netherlands, E-mail:

MSc Jim Floor, born in 1986, studied Industrial Design Engineering at TU Delft and obtained a Master of Science degree in Integrated Product Design, also at TU Delft. He currently works as a mechanical design engineer at Ultimaker in Geldermalsen, The Netherlands.

MSc Bas van Deursen, born in 1982, subsequently obtained a Bachelor of Science degree at University College Maastricht (Maastricht University, a Master of Science degree in Bioelectronics & Nanotechnology at Hasselt University, and a Master of Science degree in Integrated Product Design at TU Delft, The Netherlands). He worked at several companies as a mechanical design engineer and is currently the manager of the hardware R&D team at Ultimaker in Geldermalsen, The Netherlands.

Prof. Dr. Erik Tempelman, born in 1969, studied Aerospace Engineering and obtained his Master of Science degree on Structures & Materials at TU Delft, the Netherlands. During his professional career he worked in the automotive industry (DAF Trucks, Nedschroef), worked on contract research at TNO and as a university professor at TU Delft. At the moment, he is an Associate Professor at TU Delft in the Netherlands.


References

1 B.Wittbrodt, J. M.Pearce: The effects of PLA color on material properties of 3-D printed components, Additive Manufacturing (2015), No. 8, pp. 110116Suche in Google Scholar

2 http://my3dmatter.com/best-pla-filament-supplier-for-3d-printing-needs/ (2015a, January 8)Suche in Google Scholar

3 http://my3dmatter.com/influence-infill-layer-height-pattern/ (2015b, March 10)Suche in Google Scholar

4 A.Bagsik, V.Schoeppner, E.Klemp: FDM part quality manufactured with Ultem 9085, 14th International Scientific Conference on Polymeric Materials, Halle (Saale) (2010), pp. 307315Suche in Google Scholar

5 D.Croccolo, M.De Agostinis, G.Olmi: Experimental characterization and analytical modeling of the mechanical behavior of fused deposition processed parts made of ABS-M30, Computational Materials Science79 (2013), pp. 506518, 10.1016/j.commatsci.2013.06.041Suche in Google Scholar

6 W. C.Smith, R. W.Dean: Structural characteristics of fused deposition modeling polycarbonate material, Polymer Testing32 (2013), No. 8, pp. 13061312, 10.1016/j.polymertesting.2013.07.014Suche in Google Scholar

7 O. S.Es-Said, J.Foyos, R.Noorani, M.Mendelson, R.Marloth, B. A.Pregger: Effect of Layer Orientation on Mechanical Properties of Rapid Prototyped Samples, Materials and Manufacturing Processes15 (2000), pp. 107122, 10.1080/10426910008912976Suche in Google Scholar

8 A.Lanzotti, M.Grasso, G.Staiano, M.Martorelli: The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer, Rapid Prototyping Journal21 (2015), No. 5, pp. 604617, 10.1108/RPJ-09-2014-0135Suche in Google Scholar

9 S.-H. Ahn, M.Montero, D.Odell, S.Roundy, P. K.Wright: Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyping Journal8 (2002), pp. 248257, 10.1108/13552540210441166Suche in Google Scholar

10 T.Letcher, M.Waytashek: Material property testing of 3D-printed specimen in PLA on an entry-level 3D Printer, ASME International Mechanical Engineering Congress and Exposition, Volume 2A: Advanced Manufacturing, Montreal (2014), pp. V02AT02A014, 10.1115/IMECE2014-39379Suche in Google Scholar

11 B. M.Tymrak, M.Kreiger, J. M.Pearce: Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions, Materials and Design58 (2014), pp. 242246, 10.1016/j.matdes.2014.02.038Suche in Google Scholar

12 J.Torres, M.Cole, A.Owji, Z.DeMastry, A. P.Gordon: An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of experiments, The Journal of The Minerals, Metals & Materials Society67 (2015), No. 5, pp. 11831193, 10.1007/s11837-015-1367-ySuche in Google Scholar

13 A. K.Sood, R. K.Ohdar, S. S.Mahapatra: Improving dimensional accuracy of Fused Deposition Modelling processed part using grey Taguchi method, Materials & Design30 (2009), No. 10, pp. 42434252, 10.1016/j.matdes.2009.04.030Suche in Google Scholar

14 NISTIR 8059: Materials Testing Standards for Additive Manufacturing of Polymer Materials, National Institute for Standards and Technology, Gaithersburg, USA (2015)Suche in Google Scholar

15 J. W.Floor: Getting a Grip on the Ultimaker 2 – Tensile Strength of 3D Printed PLA: A Systematic Investigation, MSc Thesis, Delft University of Technology, Delft, The Netherlands (2015)Suche in Google Scholar

Published Online: 2018-07-13
Published in Print: 2018-07-16

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
  5. Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
  6. Tensile strength of 3D printed materials: Review and reassessment of test parameters
  7. Numerical calculation of stress concentration of various subsurface and undercutting pit types
  8. Chemical composition of chosen phase constituents in austempered ductile cast iron
  9. Investigation of initial yielding in the small punch creep test
  10. Optimization and characterization of friction surfaced coatings of ferrous alloys
  11. Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
  12. In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
  13. Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
  14. Thermography using a 1D laser array – From planar to structured heating
  15. Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
  16. Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
  17. High temperature compressive behavior of three-dimensional five-directional braided composites
  18. Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
  19. Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111203/html
Button zum nach oben scrollen