Startseite Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens

  • Peter Starke , Frank Walther und Dietmar Eifler
Veröffentlicht/Copyright: 13. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Weight-optimized component design as well as a reliable estimation of the lifetime of metallic materials and components require a comprehensive understanding of fatigue processes and a systematic investigation of the underlying fatigue behavior. This becomes even more important when designing highly loaded components such as wheels of high-speed passenger railway systems. Typically, mechanical stress-strain hysteresis measurements and increasingly different types of temperature and electrical resistance measurements are used to characterize the fatigue behavior and fatigue processes. Here, electrical resistance measurements provide significant information as they allow the detection of microstructural changes, e. g., through changes in dislocation density and structure. In addition, electrical resistance measurements can be considered in load increase and constant amplitude tests with inserted load-free sequences and in service load tests to characterize damage progress. In this paper, characteristic values of the change in electrical resistance were determined for ICE R7 wheel steel specimens and correlated with dislocation density, which was load- and cycle-dependent and determined through transmission electron microscopy.

Kurzfassung

Die gewichtsoptimierte Bauteilauslegung sowie die zuverlässige Lebensdauerschätzung metallischer Werkstoffe und Bauteile erfordern ein umfassendes Verständnis der Ermüdungsprozesse und eine systematische Untersuchung des zugrundeliegenden Ermüdungsverhaltens. Dies wird umso wichtiger, wenn es sich um hochbeanspruchte Bauteile wie bspw. Räder des Hochgeschwindigkeitspersonenverkehrs handelt. Typischerweise werden mechanische Spannung-Dehnung-Hysteresis-Messungen und zunehmend unterschiedliche Arten der Temperatur- und elektrischen Widerstandsmessung eingesetzt, um das Ermüdungsverhalten zu charakterisieren. Insbesondere liefern hierbei elektrische Widerstandsmessungen einen deutlichen Mehrwert an Informationen, da sie bereits erste mikrostrukturelle Veränderungen detektieren können, die auf Versetzungsreaktionen zurückzuführen sind. Zusätzlich können elektrische Widerstandsmessungen bei Laststeigerungs- und Einstufenversuchen mit eingeschobenen lastfreien Haltezeiten sowie in Betriebslastversuchen zur Charakterisierung des Schädigungsfortschritts eingesetzt werden. Im Rahmen dieses Artikels wurden für den ICE-Vollradstahl R7 Kennwerte der elektrischen Widerstandsänderung ermittelt und beanspruchungs- bzw. lastspielzahlabhängig mit der Veränderung der röntgenografisch ermittelten Versetzungsdichte korreliert.


*Correspondence Address, Dr.-Ing. Peter Starke, Chair of Non-Destructive Testing and Quality Assurance, Saarland University, Am Markt Zeile 4, 66125 Saarbrücken, Germany, E-mail:

Dr.-Ing. Peter Starke, born in 1977, studied Mechanical Engineering at TU Kaiserslautern, Germany. Since 2002, he has been a research assistant at the Institute of Materials Science and Engineering (WKK) at TU Kaiserslautern, Germany. He received his engineering doctoral degree in 2007, working on “The fatigue life calculation of metallic materials under constant amplitude loading and service loading”. From 2007 to 2012, he headed the research group “Fatigue life calculation” at WKK. Afterwards, he changed to the Fraunhofer IZFP in Saarbrücken, Germany. Since 2013 he is in the position of a senior research associate at the Chair of Non-Destructive Testing and Quality Assurance at Saarland University in Saarbrücken, Germany. His research is mainly focused on the use of non-destructive measurement techniques for the characterization of the fatigue behavior and the fatigue life calculation of metallic and non-metallic materials in the LCF-, HCF- and VHCF-regime as well as for the evaluation of defects and inhomogeneities in the materials microstructure.

Prof. Dr.-Ing. habil. Frank Walther, born in 1970, studied Mechanical Engineering majoring in Materials Science and Engineering at TU Kaiserslautern University, Germany. There he finished his PhD on the fatigue assessment of railway wheel steel in 2002 and his habilitation on physical measurement techniques for microstructural-based fatigue assessment and lifetime calculation of metals in 2007. At Schaeffler AG in Herzogenaurach, Germany, he was responsible for Public Private Partnership within Corporate Development from 2008 to 2010. Since 2010, he has been Professor for Materials Test Engineering (WPT) at TU Dortmund University, Germany. His research portfolio includes the determination of structure-property relationships in metal- and polymer-based materials and components under fatigue loading from the LCF to VHCF range, taking the influence of manufacturing and joining processes as well as service loading and corrosion deterioration into account.

Prof. Dr.-Ing. habil. Dietmar Eifler, born in 1949, got his PhD from the University of Karlsruhe, Germany. From 1991 to 1994, he was Professor at the University of Essen, Germany. From 1994 until 2015, he was Professor and from 2015 to 2017 Senior Research Professor at the Institute of Materials Science and Engineering at TU Kaiserslautern. His research activities are focused on the characterization of the fatigue behavior of metallic materials using mechanical, electrical, magnetic and acoustic as well as thermal measuring techniques in the LCF-, HCF- and VHCF regime.


References

1 P.Lukáš, M.Klesnil: Cyclic stress-strain response and fatigue life of metals in low amplitude region, Materials Science and Engineering11 (1973), pp. 345356, 10.1016/0025-5416(73)90125-0Suche in Google Scholar

2 A.Brazenas, D.Vaiciulis: Determination of fatigue curve parameters at cyclic strain limited loading according to the mechanical characteristics of power energy structural materials, Nuclear Engineering and Design241 (2011), pp. 35963604, 10.1016/j.nucengdes.2011.07.022Suche in Google Scholar

3 F.Curà, A. E.Gallinatti, R.Sesana: Dissipative aspects in thermographic methods, Fatigue and Fracture of Engineering Materials & Structures 3512 (2012), pp. 11331147, 10.1111/j.1460-2695.2012.01701.xSuche in Google Scholar

4 G.Meneghetti, R. B.Atzori: A two-parameter, heat energy-based approach to analyze the mean stress influence on axial fatigue behavior of plain steel specimens, International Journal of Fatigue60–70 (2016), pp. 6070, 10.1016/j.ijfatigue.2015.07.028Suche in Google Scholar

5 D.Rigon, M.Ricotta, G.Meneghetti: An analysis of the specific heat loss at the tip of severely notched stainless steel specimens to correlate the fatigue strength, Theoretical and Applied Fracture Mechanics92 (2017), pp. 240251, 10.1016/j.tafmec.2017.09.003Suche in Google Scholar

6 M. A.Omari, I.Sevostianov: Evaluation of the growth of dislocations density in fatigue loading process via electrical resistivity measurements, International Journal of Fracture179 (2013), pp. 229235, 10.1007/s10704-012-9780-5Suche in Google Scholar

7 O.Glushko, M. J.Cordill: Electrical Resistance Decrease Due to Grain Coarsening Under Cyclic Deformation, JOM 66, 4 (2014), pp. 598601, 10.1007/s11837-014-0943-xSuche in Google Scholar

8 M. A.Omari, I.Sevostianov: Estimation of changes in the mechanical properties of stainless steel subjected to fatigue loading via electrical resistance monitoring, International Journal of Engineering Science65 (2013), pp. 4048, 10.1016/j.ijengsci.2013.02.006Suche in Google Scholar

9 B.Sun, L.Yang, Y.Guo: A high-cycle fatigue accumulation model based on electrical resistance for structural steels, Fatigue and Fracture of Engineering Materials & Structures30 (2007), pp. 10521062, 10.1111/j.1460-2695.2007.01175.xSuche in Google Scholar

10 P.Starke, F.Walther: Modellbasierte Korrelation zwischen dem elektrischen Widerstand und der Versetzungsstruktur des ermüdungsbeanspruchten ICE-Radstahls R7, Materials Testing57 (2015), No. 1, pp. 916, 10.3139/120.110681Suche in Google Scholar

11 C.Motz, O.Friedl, R.Pippan: Fatigue crack propagation in cellular metals, International Journal of Fatigue 27, 10–12 (2005), pp. 15711581, 10.1016/j.ijfatigue.2005.06.044Suche in Google Scholar

12 F.Walther, D.Eifler: Fatigue life calculation of SAE 1050 and SAE 1065 steel under random loading, International Journal of Fatigue29 (2007), No. 9–11, pp. 18851892, 10.1016/j.ijfatigue.2007.01.005Suche in Google Scholar

13 P.Starke, F.Walther, D.Eifler: Fatigue assessment and fatigue life calculation of quenched and tempered SAE 4140 steel based on stress-strain hysteresis, temperature and electrical resistance measurements, Fatigue and Fracture of Engineering Materials & Structures30 (2007), pp. 10441051, 10.1111/j.1460-2695.2007.01174.xSuche in Google Scholar

14 G.Meneghetti: Analysis of the fatigue strength of a stainless steel based on the energy dissipation, International Journal of Fatigue29 (2007), No. 1, pp. 8194, 10.1016/j.ijfatigue.2006.02.043Suche in Google Scholar

15 F.Walther, D.Eifler: Cyclic deformation behavior of steels and light-metal alloys, Materials Science and Engineering A468–470 (2007), pp. 259266, 10.1016/j.msea.2006.06.146Suche in Google Scholar

16 F.Walther, D.Eifler, U.Mosler, U.Martin: Deformation behaviour and microscopic investigations of cyclically loaded railway wheels and tires, International Journal of Materials Research96 (2005), pp. 753760, No. 7, 10.3139/146.101098Suche in Google Scholar

17 P.Starke, F.Walther, D.Eifler: “PHYBAL“: a short-time procedure for a reliable fatigue-life calculation, Advanced Engineering Materials12 (2010), No. 4, pp. 276282, 10.1002/adem.200900344Suche in Google Scholar

18 J. D.Morrow: Cyclic plastic strain energy and fatigue of metals, ASTM-Internal Friction, Damping and Cyclic Plasticity STP378 (1964), pp. 4587, 10.1520/STP43764SSuche in Google Scholar

Published Online: 2018-07-13
Published in Print: 2018-07-16

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
  5. Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
  6. Tensile strength of 3D printed materials: Review and reassessment of test parameters
  7. Numerical calculation of stress concentration of various subsurface and undercutting pit types
  8. Chemical composition of chosen phase constituents in austempered ductile cast iron
  9. Investigation of initial yielding in the small punch creep test
  10. Optimization and characterization of friction surfaced coatings of ferrous alloys
  11. Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
  12. In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
  13. Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
  14. Thermography using a 1D laser array – From planar to structured heating
  15. Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
  16. Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
  17. High temperature compressive behavior of three-dimensional five-directional braided composites
  18. Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
  19. Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111202/html
Button zum nach oben scrollen