Startseite An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers

  • Emre Demirci und Ali Rıza Yıldız
Veröffentlicht/Copyright: 13. Juli 2018
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, the effect of conventional steel, new generation DP-TRIP steels, AA7108 – AA7003 aluminum alloys, AM60 – AZ31 magnesium alloys and crash-box cross-sections on crash performance of thin-walled energy absorbers are investigated numerically for the lightweight design of vehicle structures. According to finite element analysis results, crash performance parameters such as total energy absorption, specific energy absorption, reaction forces and crush force efficiencies are compared for the above-mentioned materials. The energy absorption capability of steel energy absorbers is better than that of aluminum and magnesium absorbers. On the other hand, the energy absorption capacity per unit mass of energy absorbers made from lightweight materials is higher than that of steel energy absorbers. This advantage of lightweight alloys encourages automobile manufacturers to use them in designing structural vehicle components.

Kurzfassung

In den letzten Jahren ist die Gewichtsreduktion von Fahrzeugen eine der bedeutendsten Eigenschaften in Hinblick auf die Kraftstoffeffizienz und niedrige Emissionen in der Automobilindustrie. Daher versuchen Automobilingenieure neue Sicherheitssysteme für beides, eine Leichtbaustruktur und zur Erfüllung neuer internationaler Crashversuchsstandards, wie zum Beispiel ECE und NHTSA, zu entwickeln. Dünnwandige Rohre werden als Crashboxen oder Energieabsorber in Fahrzeugrahmen verwandt. Für den vorliegenden Beitrag wurde die Kollisionssicherheit von verschieden geformten dünnwandigen Rohren aus verschiedenen Werkstoffen, eine neue Generation von DP-TRIP-Stählen, den Aluminiumlegierungen AA7108 und AA7003 sowie der Magnesiumlegierung AM60 für den Leichtbau von Fahrzeugenergieabsorbern numerisch untersucht. Entsprechend der Ergebnisse der Finite Elemente Analysen wurden die Crashperformanz-Parameter wie die totale Energieabsorption, die spezifische Energieabsorption, die Reaktionskräfte und die Effizienz hinsichtlich der Eindrückkraft für die verschiedenen Werkstoffe verglichen. Obwohl die Energieabsorbierungskapazität für die Energieabsorber aus Stahl besser als die für die Aluminium- und Magnesiumabsorber war, können die Energieabsorber aus den Leichtbauwerkstoffen mehr Energie pro Masseeinheit des Werkstoffes absorbieren als die Stähle. Dieser Vorteil der Leichtbaulegierungen hat Automobilbauer dazu veranlasst, diese im Design von Fahrzeugstrukturkomponenten zu verwenden.


*Correspondence Address, Prof. Dr. Ali Rıza Yildiz, Department of Automotive Engineering, Uludağ University, Görükle, Bursa, Turkey, E-mail:

Dr. Ali Rıza Yıldız is a Professor at the Department of Automotive Engineering, Uludağ University, Bursa, Turkey. He worked in the field of multi-component topology optimization of structures as Research Associate at the University of Michigan, Ann Arbor, USA. Furthermore, he worked on a NSF and DOE funded research projects at the Center for Advanced Vehicular Systems (CAVS), Mississippi State University in Starkville, USA. In 2015, he was a winner of TÜBA-GEBİP Young Scientist Outstanding Achievement Award given by the Turkish Academy of Sciences (TÜBA). He also received the METU (Middle East Technical University) Prof. Mustafa N. Parlar Foundation Research Incentive Award in 2015. In 2017, The TUBITAK Incentive Award, given to scientists who under the age of 40 who have proved to have the necessary qualifications to contribute to science in the future at an international level, was given to him. His research interests are the finite element analysis of automobile components, lightweight design, composite materials, vehicle design, vehicle crashworthiness, shape and topology optimization of vehicle components, meta-heuristic optimization techniques and sheet metal forming. He has been serving as a technical consultant for R&D Projects of Oyak-Renault Automobile Factory.

Emre Demirci, born 1988, received his Bachelor's and Master's degree at the Department of Mechanical Engineering, Yıldız Technical University in İstanbul in 2010 and Bursa Technical University, Turkey, in 2014, respectively. He has been working during his master studies in the field of optimum design of automobile crash boxes. His master study was supported by the Ministry of Science, Industry and Technology of Turkey. He is currently a research assistant at Bursa Technical University.


References

1 A. R.Yildiz, E.Kurtuluş, E.Demirci, B. S.Yildiz, S.Karagöz: Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm, Materials Testing58 (2016), No. 1, pp. 7578, 10.3139/120.110823Suche in Google Scholar

2 S.Karagöz, A. R.Yildiz: A comparison of recent metaheuristic algorithms for crashworthiness optimisation of vehicle thin-walled tubes considering sheet metal forming effects, International Journal of Vehicle Design73 (2017), No. 1–3, pp. 179188, 10.1504/IJVD.2017.082593Suche in Google Scholar

3 C. M.Tamarelli: The Evolving Use of Advanced High-Strength Steels for Automotive Applications, Steel Market Development Institute, Michigan, USA (2011)Suche in Google Scholar

4 A. R.Yildiz, K. N.Solanki: Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach, International Journal of Advanced Manufacturing Technology59 (2012), No. 1, pp. 367376, 10.1007/s00170-011-3496-ySuche in Google Scholar

5 M.Kiani, A. R.Yildiz: A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization, Archives of Computational Methods in Engineering23 (2016), No. 4, pp. 723734, 10.1007/s11831-015-9155-ySuche in Google Scholar

6 B. S.Yildiz, A. R.Yildiz: Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod, Materials Testing, 60(2018), No. 3, Pp. 311315, 10.3139/120.111153Suche in Google Scholar

7 B. S.Yildiz, H.Lekesiz, A. R.Yildiz: Structural design of vehicle components using gravitational search and charged system search algorithms, Materials Testing, 58 (2016), No. 1, pp. 7981, 10.3139/120.110819Suche in Google Scholar

8 A. R.Yildiz: Optimal structural design of vehicle components using topology design and optimization, Materials Testing50(2008), No. 4, pp. 224228, 10.3139/120.100880Suche in Google Scholar

9 A. R.Yildiz, F.Ozturk: Hybrid taguchi-harmony search approach for shape optimization, In: GeemZ (ed) Recent advances in Harmony search algorithm, pp. 8998, Springer, Berlin, 201010.1007/978-3-642-04317-8_8Suche in Google Scholar

10 A. R.Yildiz: A new hybrid particle swarm optimization approach for structural design optimization in the automotive industry, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 226 (2012), No. 10, pp. 1340135110.1177/0954407012443636Suche in Google Scholar

11 N.Pholdee, S.Bureerat, A. R.Yildiz: Hybrid real-code population-based incremental learning and differential evolution for many-objective optimisation of an automotive floor-frame, International Journal of Vehicle Design73 (2017), No. 1–3, pp. 2053, 10.1504/IJVD.2017.082578Suche in Google Scholar

12 T.Güler, E.Demirci, A. R.Yildiz, U.Yavuz: Lightweight design of an automobile hinge component using glass fiber polyamide composites, Materials Testing, 60(2018), No. 3, pp. 306310, 10.3139/120.111152Suche in Google Scholar

13 B. S.Yildiz, A. R.Yildiz: Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod, Materials Testing, 60(2018), No. 3, Pp. 311315, 10.3139/120.111153Suche in Google Scholar

14 G.Fontaras, N.-G.Zacharof, B.Ciuffo: Fuel consumption and CO2 emissions from passenger cars in Europe – Laboratory versus real-world emissions, Progress in Energy and Combustion Science, 60 (2017), pp. 97131, 10.1016/j.pecs.2016.12.004Suche in Google Scholar

15 J.Rowe: Advanced Materials in Automotive Engineering, Woodhead Publishing, Philadelphia, USA (2012)10.1533/9780857095466Suche in Google Scholar

16 S.Keeler, M.Kimchi: Advanced High-Strength Steels Application Guidelines Version 5.0, World Auto Steel (2014)Suche in Google Scholar

17 M.Kiani, I.Gandikota, M.Rais-Rohani, K.Motoyama: Design of lightweight magnesium car body structure under crash and vibration constraints, Journal of Magnesium and Alloys2 (2014), No. 2, pp. 99108, 10.1016/j.jma.2014.05.005Suche in Google Scholar

18 G.Sun, S.Li, Q.Liu, G.Li: Experimental study on crashworthiness of empty/aluminum foam/honeycomb-filled CFRP tubes, Composite Structures152 (2016), pp. 969993, 10.1016/j.compstruct.2016.06.019Suche in Google Scholar

19 W. J.Witteman: Improved Vehicle Crashworthiness Design by Control of the Energy Absorption for Different Collision Situations, PhD Thesis, Technische Universiteit Eindhoven, Eindhoven (1999)Suche in Google Scholar

20 M. A.Guler, M. E.Cerit, B.Bayram, B.Gerçeker, E.Karakaya: The effect of geometrical parameters on the energy absorption characteristics of thin-walled structures under axial impact loading, International Journal of Crashworthiness15 (2006), No. 4, pp. 377390, 10.1080/13588260903488750Suche in Google Scholar

21 Ø.Jensen, M.Langseth, O. S.Hopperstad: Experimental investigations on the behaviour of short to long square aluminum tubes subjected to axial loading, International Journal of Impact Engineering30 (2004), No. 8–9, pp. 9731003, 10.1016/j.ijimpeng.2004.05.002Suche in Google Scholar

22 G. M.Nagel, D. P.Thambiratnam: Computer simulation and energy absorption of tapered thin-walled rectangular tubes, Thin-Walled Structures43 (2005), No. 8, pp. 12251242, 10.1016/j.tws.2005.03.008Suche in Google Scholar

23 G. M.Nagel, D. P.Thambiratnam: Dynamic simulation and energy absorption of tapered tubes under impact loading, International Journal of Crashworthiness9 (2004), No. 4, pp. 389399, 10.1016/j.ijimpeng.2005.01.002Suche in Google Scholar

24 J.Zhou, F.Wang, X.Wan: Optimal design and experimental investigations of aluminum sheet for lightweight of car hood, Materials Today: Proceedings2 (2015), No. 10, pp. 50295036, 10.1016/j.matpr.2015.10.093Suche in Google Scholar

25 C. P.Kohar, A.Zhumagulov, A.Brahme, M. J.Worswick, R. K.Mishra, K.Inal: Development of high crush efficient, extrudable aluminum front rails for vehicle lightweighting, International Journal of Impact Engineering95 (2016), pp. 1734, 10.1016/j.ijimpeng.2016.04.004Suche in Google Scholar

26 S.Logan, A.Kizyma, C.Patterson, S.Rama: Lightweight Magnesium Intensive Body Structure, SAE Technical Paper 2006-01-0523, 10.4271/2006-01-0523.Suche in Google Scholar

27 http://www.boronextrication.com/2013/07/03/2014-mazda-6-body-structure (accessed 11 October 2017)Suche in Google Scholar

28 G.Nagel: Impact and Energy Absorption of Straight and Tapered Rectangular Tubes, PhD Thesis, The School of Civil Engineering Queensland University, Queensland (2005)Suche in Google Scholar

29 A. A. A.Alghamdi: Collapsible impact energy absorbers: an overview, Thin-Walled Structures39 (2001), No. 2, pp. 189213, 10.1016/S0263-8231(00)00048-3Suche in Google Scholar

30 A.Chathbai: Parametric Study of Energy Absorption Characteristic of a Rectangular Aluminum Tube Wrapped With E-Glass/Epoxy, Master Thesis, Wichita State University, Mechanical Engineering Department, Kansas, USA (2007)Suche in Google Scholar

31 S. Y.Jin, W.Altenhof: Comparison of the load/displacement and energy absorption performance of round and square Aa6061-T6 extrusions under a cutting deformation mode, International Journal of Crashworthiness12 (2007), No. 3, pp. 265278, 10.1080/13588260701441183Suche in Google Scholar

32 S. J.Beard, F.-K.Chang: Energy absorption of braided composite tubes, International Journal of Crashworthiness7 (2002), No. 2, pp. 191206, 10.1533/cras.2002.0214Suche in Google Scholar

33 M. D.White, N.Jones: Experimental quasi-static axial crushing of top-hat and double-hat thin-walled sections, International Journal of Mechanical Sciences41 (1999), No. 2, pp. 179208, 10.1016/S0020-7403(98)00047-2Suche in Google Scholar

34 F.Xu, G.Sun, G.Li, Q.Li: Experimental study on crashworthiness of tailor-welded blank (TWB) thin-walled high-strength steel(HSS) tubular structures, Thin-Walled Structures74 (2014), pp. 1227, 10.1016/j.tws.2013.08.021Suche in Google Scholar

35 H. R.Zarei, M.Kröger: Crashworthiness optimization of empty and filled aluminum crash boxes12 (2007), No. 3, pp. 255264, 10.1080/13588260701441159Suche in Google Scholar

36 S.Kokkula, M.Langseth, O. S.Hopperstad, O. G.Lademo: Behaviour of an automotive bumper beam-longitudinal system at 40 % offset impact: an experimental and numerical study, Latin American Journal of Solids and Structures3 (2006), No. 1, pp. 5973Suche in Google Scholar

37 International Magnesium Association, Mechanical properties of magnesium alloys, http://www.intlmag.org/page/basics_mech_prop_ima (accessed 2 March 2017).Suche in Google Scholar

38 Y.Chen, Y. B.Guo, M.Gupta, V. P. W.Shim: A study of the dynamic compressive response of AZ31/Al2O3 nanocomposites and the influence of nanoparticles, International Journal of Impact Engineering89 (2016), pp. 114123, 10.1016/j.ijimpeng.2015.11.011Suche in Google Scholar

39 J. J.He, T. M.Liu, H. B.Chen, L. W.Lu, F. S.Pan: Effects of prior compression on ductility and yielding behaviour in extruded magnesium alloy AZ31, Materials Science and Technology30 (2014), No. 12, pp. 14881494, 10.1179/026708313X13853742547939Suche in Google Scholar

40 I.Westermann, A. L.Haugstad, Y.Langsrud, K.Marthinsen: Effect of quenching rate on microstructure and mechanical properties of commercial AA7108 aluminum alloy, Transactions of Nonferrous Metals Society of China22 (2012), No. 8, pp. 18721877, 10.1016/S1003-6326(11)61400-3Suche in Google Scholar

41 G. M.Nagel, D. P.Thambiratnam: A numerical study on the impact response and energy absorption of tapered thin-walled tubes, International Journal of Mechanical Sciences, 46 (2004), No. 2, pp. 20121610.1016/j.ijmecsci.2004.03.006Suche in Google Scholar

42 N.Peixinho, N.Jones, A.Pinho: Application of dual-phase and TRIP steels on the improvement of crashworthy structures, Materials Science Forum502 (2005), pp. 181188, 10.4028/www.scientific.net/MSF.502.181Suche in Google Scholar

43 W. Q.Song, P.Beggs, M.Easton: Compressive strain-rate sensitivity of magnesium–aluminum die casting alloys, Materials and Design30 (2009), No. 3, pp. 642648, 10.1016/j.matdes.2008.05.050Suche in Google Scholar

44 A.Parrish, M.Rais-Rohani, A.Najafi: Crashworthiness optimisation of vehicle structures with magnesium alloy parts, International Journal of Crashworthiness17 (2012), No. 3, pp. 259281, 10.1080/13588265.2011.648518Suche in Google Scholar

45 S. S.Hsu, N.Jones: Dynamic axial crushing of aluminum alloy 6063-T6 circular tubes, Latin American Journal of Solids and Structures1 (2004), pp. 277296Suche in Google Scholar

46 LSTC: Ls-Dyna Keyword User's Manual Volume II, Livermore Software Technology Corporation, Livermore, California, USA (2012)Suche in Google Scholar

47 LSTC: Ls-Dyna Keyword User's Manual Volume I, Livermore Software Technology Corporation, Livermore, California, USA (2012)Suche in Google Scholar

Published Online: 2018-07-13
Published in Print: 2018-07-16

© 2018, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
  5. Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
  6. Tensile strength of 3D printed materials: Review and reassessment of test parameters
  7. Numerical calculation of stress concentration of various subsurface and undercutting pit types
  8. Chemical composition of chosen phase constituents in austempered ductile cast iron
  9. Investigation of initial yielding in the small punch creep test
  10. Optimization and characterization of friction surfaced coatings of ferrous alloys
  11. Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
  12. In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
  13. Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
  14. Thermography using a 1D laser array – From planar to structured heating
  15. Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
  16. Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
  17. High temperature compressive behavior of three-dimensional five-directional braided composites
  18. Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
  19. Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111201/html
Button zum nach oben scrollen