Ratcheting testing of polytetrafluoroethylene (PTFE) under multiple-step compression
-
Wei Wang
Abstract
Uniaxial stress-controlled ratcheting experiments of PTFE (polytetrafluoroethylene) under cyclic compressive loads with multiple load steps were performed. The influence of stress rate, temperature, stress amplitude, loading sequence and peak holding on the compressive ratcheting behavior have been discussed systematically. Results indicate that ratcheting deformation increases significantly when enhancing temperature and stress amplitude and reducing stress rate. Only a slight, accumulated deformation occurs during the first 20 or so cycles at room temperature (RT), but it always turns to shakedown. Moreover, ratcheting strain is clearly influenced by the loading sequence. When greater compressive deformation was obtained during the prior load step due to a greater stress level (such as higher temperature or a lesser stress rate), increased compressive strain hardening and deformation resistance could be produced, which in turn restricts or even reduces ratcheting deformation in the pursuing load step. It is of great interest that no initial cyclic stress strain curve was observed under cyclic compression at peak holding time. This indicates that creep recovery due to anelastic relaxation decreases the ratcheting rate of PTFE material under compressive creep-fatigue conditions. This research provides an important testing approach and data for PTFE material subjected to repeated compressive loads influenced by temperature modulation.
Kurzfassung
Für den vorliegenden Beitrag wurden einachsige spannungskontrollierte Ratcheting-Versuche an PTFE unter zyklischen Drucklasten in mehreren Lastschritten durchgeführt. Die Einflüsse des Spannungszustandes, der Temperatur, der Spannungsamplitude, der Belastungssequenz und der Spitzenhaltezeit unter der Druckbeanspruchung werden systematisch diskutiert. Die Ergebnisse deuten darauf hin, dass die Deformation signifikant mit der Temperatur und der Spannungsamplitude sowie reduzierter Spannungsrate zunimmt. Insbesondere tritt eine leichte Deformation während der ersten 20 Zyklen bei Raumtemperatur auf, die aber immer zum Zusammenbruch führt. Darüber hinaus wird die Ratcheting-Dehnung offensichtlich durch die Bealstungsequenz beeinflusst. Je größer die Kompressionsdeformation im vorhergehenden Belastungsschritt aufgrund eines höheren Spannungsniveaus, einer höheren Temperatur oder eines geringeren Spannungszustandes ist, desto größer ist die Verfestigung unter Kompressionsdehnung, die im folgenden Lastschritt die Ratcheting-Deformation eingrenzt oder sogar reduziert. Von besonderem Interesse ist es, dass kein Öffnungsverhalten der zyklischen Spannungs-Dehnungs-Kurve unter zyklischer Kompression mit der Peakhaltezeit beobachtet wurde. Dies deutet darauf hin, dass die Erholung unter Kriechen aufgrund eines unelastischen Relaxationseffektes die Ratcheting-Rate des PTFE unter Kriech-Druck-Ermüdungsbedingungen verringert. Die vorliegenden Forschungsergebnisse zeigen wichtige Versuchsanordnungen und -daten für das Material PTFE unter wiederholten Kompressionsbeanspruchungen und unter Berücksichtigung des Temperatureinflusses.
References
1 U.Cagri, B. MeteHan, B.Melih, G.Necdet: Effect of post-curing heat treatment on mechanical properties of fiber reinforced polymer (FRP) composites, Materials Testing59 (2017), No. 4, pp. 366–37210.3139/120.111001Suche in Google Scholar
2 G.Abdulmecit, A.Mehmet, T.Servet: Mechanical properties of aluminum powder reinforced polypropylene, Materials Testing59 (2017), No. 1, pp. 86–9310.3139/120.110970Suche in Google Scholar
3 A.Mihrigül, K.Yusuf, G.Beril: Characterization of hollow glass sphere reinforced epoxy composites: Dynamical mechanical analysis and morphology, Materials Testing59(2017), No. 3, pp. 239–24310.3139/120.110990Suche in Google Scholar
4 V.Chinnasamy, S. PavayeeSubramani: Effect of nanoclay on the mechanical behavior of epoxy composites, Materials Testing58(2016), No. 10, pp. 903–90710.3139/120.110937Suche in Google Scholar
5 V.Natarajan, B. GovindasamyBhavani, R.Sudhakar, P.Kaliyaperumal, S.Suresh: Effect of Cloisite 30B nanoclay on the mechanical properties of HDPE nanocomposites, Materials Testing59(2017), No. 4, pp. 355–36010.3139/120.111010Suche in Google Scholar
6 X.Zheng, X.Wen, J.Gao, J.Yu, W.Lin, J.Xu: Temperature-dependent ratcheting of ptfe gaskets under cyclic compressive loads with small stress amplitude, Polymer Testing57 (2017), pp. 296–30110.1016/j.polymertesting.2016.12.002Suche in Google Scholar
7 X.Zheng, X.Wen, W.Wang, J.Gao, W.Lin, L.Ma, J.Yu: Creep-ratcheting behavior of PTFE gaskets under various temperatures, Polymer Testing60 (2017), pp. 229–23510.1016/j.polymertesting.2017.04.005Suche in Google Scholar
8 X.Zheng, H.Wang, W.Wang, W.Lin, L.Ma, J.Xu, J.Yu: Compressive ratcheting effect of expanded PTFE considering multiple load paths, Polymer Testing61 (2017), pp. 93–9910.1016/j.polymertesting.2017.05.011Suche in Google Scholar
9 J.Guo, X.Zheng, Y.Zhang, H.Shi, W.Meng: A unified continuum damage mechanics model for predicting the stress relaxation behavior of high-temperature bolting, ASME Journal of Pressure Vessel Technology136 (2013), No.1, 011203 10.1115/1.4025084Suche in Google Scholar
10 J.Guo, W.Meng, X.Zheng, L.Tian, H.Shi: Prediction of stress relaxation from creep data in terms of average creep rate, Journal of Strain Analysis and Engineering Design50 (2015), No. 1, pp. 5–2410.1177/0309324714555151Suche in Google Scholar
11 J.Guo, F.Li, X.Zheng, H.Shi, W.Meng: An accelerated method for creep prediction from short term stress relaxation tests, ASME Journal of Pressure Vessel Technology138 (2016), No. 3, 031401 10.1115/1.4032109Suche in Google Scholar
12 G.Kang, J.Zhang, Y.Sun, Q.Kan: Uniaxial Time-Dependent Ratcheting of SS304 Stainless Steel at High Temperatures, Journal of Iron and Steel Research, International14 (2007), pp. 53–5910.13228/j.boyuan.issn1006-706x.2007.01.012Suche in Google Scholar
13 X.Zheng, K.Wu, W.Wang, J.Yu, J.Xu, L.Ma: Low Cycle Fatigue and Ratcheting Behavior of 35CrMo Structural Steel at Elevated Temperature, Nuclear Engineering and Design314 (2017) No. 1, pp. 285–29210.1016/j.nucengdes.2017.01.016Suche in Google Scholar
14 S.Bari, T.Hassan: An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation. International Journal of Plasticity18 (2002), pp. 873–89410.1016/S0749-6419(01)00012-2Suche in Google Scholar
15 X.Chen, R.Jiao, K.Kim: On the Ohno-Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel. International Journal of Plasticity21 (2005), pp. 161–18410.1016/j.ijplas.2004.05.005Suche in Google Scholar
16 S.Zhang, F.Xuan, S.Guo, P.Zhao: The role of anelastic recovery in the creep-fatigue interaction of 9–12 % Cr steel at high temperature. International Journal of Mechanical Science122 (2017), pp. 95–10310.1016/j.ijmecsci.2017.01.018Suche in Google Scholar
17 P.Zhao, F.Xuan, D.Wu: Cyclic softening behaviors of modified 9–12 % Cr steel under different loading modes: Role of loading levels. International Journal of Mechanical Science131–132 (2017), pp. 278–28510.1016/j.ijmecsci.2017.07.001Suche in Google Scholar
18 D.Wu, F.Xuan, S.Guo, P.Zhao: Uniaxial mean stress relaxation of 9–12 % Cr steel at high temperature: Experiments and viscoplastic constitutive modeling, International Journal of Plasticity77 (2016), pp. 156–17310.1016/j.ijplas.2015.10.001Suche in Google Scholar
19 S.Zhang, F.Xuan: Interaction of cyclic softening and stress relaxation of 9–12 % Cr steel under strain-controlled fatigue-creep condition: Experimental and modeling. International Journal of Plasticity98 (2017), pp. 45–6410.1016/j.ijplas.2017.06.007Suche in Google Scholar
20 X.Zheng, C.Peng, J.Yu, C.Wang, W.Lin: A Unified Shakedown Assessment Method for Butt Welded Joints with Various Weld Groove Shapes, ASME Journal of Pressure Vessel Technology137 (2015), No. 2, 021404 10.1115/1.4028761Suche in Google Scholar
21 X.Zheng, H.Peng, J.Yu; W.Wang, W.Lin, J.Xu: Analytical Ratchet Limit for Pressurized Pipeline under Cyclic Nonproportional Loadings, Journal of Pipeline Systems Engineering and Practice8 (2017), No. 3, 04017002 10.1061/(ASCE)PS.1949-1204.0000260Suche in Google Scholar
22 X.Zheng, F.Xuan: Shakedown analysis of multilayered beams coupled with ductile damage, Nuclear Engineering and Design250 (2012), pp. 14–2210.1016/j.nucengdes.2012.05.008Suche in Google Scholar
23 A.Khan, H.Zhang: Finite deformation of a polymer: experiments and modeling. International Journal of Plasticity17 (2001), No. 9, pp. 1167–118810.1016/S0749-6419(00)00073-5Suche in Google Scholar
24 Z.Zhang, X.Chen, Y. P.Wang: Uniaxial ratcheting behavior of polytetrafluoroethylene at elevated temperature, Polymer Testing29 (2010), No. 3, pp. 352–35710.1016/j.polymertesting.2010.01.001Suche in Google Scholar
25 B.Read, P.Tomlins: Time-dependent deformation of polypropylene in response to different stress histories. Polymer38 (1997), No. 18, pp. 4617–462810.1016/S0032-3861(96)01085-3Suche in Google Scholar
26 P.Rae, D.Dattelbaum: The properties of poly(tetrafluoroethlene) (PTFE) in tension. Polymer45 (2004), No. 19, pp. 7615–762510.1016/j.polymer.2005.06.120Suche in Google Scholar
27 Z.Zhang, X.Chen, T.Wang: A simple constitutive model for cyclic compressive ratchetting deformation of polyteterafluoroethylene (PTFE) with stress rate effects. Polymer Engineering and Science48 (2008), No. 1, pp. 29–3610.1002/pen.20813Suche in Google Scholar
28 X.Shen, Z.Xia, F.Ellyin: Cyclic deformation behavior of an epoxy polymer. Part I: experimental investigation, Polymer Engineering and Science44 (2004), No. 12, pp. 2240–224610.1002/pen.20251Suche in Google Scholar
29 Z.Xia, X.Shen, F.Ellyin: Cyclic deformation of an epoxy polymer. Part II: prediction of viscoelastic constitutive models, Polymer Engineering and Science45 (2005), No. 1, pp. 103–11310.1002/pen.20235Suche in Google Scholar
30 G.Tao, Z.Xia: Ratcheting behavior of an epoxy polymer and its effect on fatigue life. Polymer Testing26 (2007), No. 4, pp. 451–46010.1016/j.polymertesting.2006.12.010.Suche in Google Scholar
31 F.Li, R.Larock, J.Otaigbe: Fish oil thermosetting polymers: creep and recovery behavior. Polymer41 (2000), No. 3, pp. 4849–486210.1016/S0032-3861(99)00702-8Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Influence of strength and cold forming on liquid metal embrittlement due to hot-dipping of high strength structural steels
- Structure and mechanical properties of ADC 12 Al foam–polymer interpenetrating phase composites with epoxy resin or silicone
- Induction and conduction thermography: From the basics to automated testing taking into account low and high residual stresses
- A case study: Design and manufacture of an eccentric spring fatigue testing device
- Effects of process parameters on the quality of PLA products fabricated by fused deposition modeling (FDM): surface roughness and tensile strength
- Corrosion behavior of alloy AA6063-T4 in HCl and NaOH solutions
- Validierung der Resonanten Frequenzsweep-Thermografie mittels einer POD-Analyse
- Supplementary finite element analysis in experimental testing of total hip stems
- Ratcheting testing of polytetrafluoroethylene (PTFE) under multiple-step compression
- Design of vehicle parts under impact loading using a multi-objective design approach
- Interfacial and physico-mechanical properties of walnut shell fiber reinforced polyester matrix composites
- Optimization of surface roughness via the Taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials
- Gegenüberstellung der induktiv angeregten Shearografie und Thermographie als zerstörungsfreie Prüfverfahren zur Detektion klebrelevanter Fehler an hochfesten Strukturklebungen und elastischen Dickschichtklebungen
- Effects of nano graphene particles on surface roughness and cutting temperature during MQL milling of AISI 430 stainless steel
Artikel in diesem Heft
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- Influence of strength and cold forming on liquid metal embrittlement due to hot-dipping of high strength structural steels
- Structure and mechanical properties of ADC 12 Al foam–polymer interpenetrating phase composites with epoxy resin or silicone
- Induction and conduction thermography: From the basics to automated testing taking into account low and high residual stresses
- A case study: Design and manufacture of an eccentric spring fatigue testing device
- Effects of process parameters on the quality of PLA products fabricated by fused deposition modeling (FDM): surface roughness and tensile strength
- Corrosion behavior of alloy AA6063-T4 in HCl and NaOH solutions
- Validierung der Resonanten Frequenzsweep-Thermografie mittels einer POD-Analyse
- Supplementary finite element analysis in experimental testing of total hip stems
- Ratcheting testing of polytetrafluoroethylene (PTFE) under multiple-step compression
- Design of vehicle parts under impact loading using a multi-objective design approach
- Interfacial and physico-mechanical properties of walnut shell fiber reinforced polyester matrix composites
- Optimization of surface roughness via the Taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials
- Gegenüberstellung der induktiv angeregten Shearografie und Thermographie als zerstörungsfreie Prüfverfahren zur Detektion klebrelevanter Fehler an hochfesten Strukturklebungen und elastischen Dickschichtklebungen
- Effects of nano graphene particles on surface roughness and cutting temperature during MQL milling of AISI 430 stainless steel