Home Technology A case study: Design and manufacture of an eccentric spring fatigue testing device
Article
Licensed
Unlicensed Requires Authentication

A case study: Design and manufacture of an eccentric spring fatigue testing device

  • Kadir Cavdar
Published/Copyright: November 15, 2018
Become an author with De Gruyter Brill

Abstract

Fatigue is one of the most significant causes of spring damage. Since fatigue tests play a crucial role in predicting the lifespan of springs, many special test device and test techniques have been describ ed in the literature. In this paper, the significant design and manufacturing steps of a newly developed eccentric spring fatigue testing device are introduced. This device is particularly suitable to perform fatigue life tests on high rigidity springs, such as mold springs. This low-cost device can be used on springs at many different load ratings. In this study, the fatigue process of metal springs and a case study regarding the development and manufacturing process of a new fatigue testing device are described. Furthermore, the fatigue test procedure on metal springs and some test results generated by the spring fatigue test device are also presented.

Kurzfassung

Ermüdung ist eine der häufigsten Ursachen für die Schädigung von Federn. Da Ermüdungsversuche von besonderer Bedeutung sind, um die Lebensdauer von Federn vorherzusagen, wurden viele spezielle Versuchsaufbauten und Versuchstechniken in der Literatur beschrieben. In dem vorliegenden Beitrag werden die signifikanten Design- und Produktionsschritte einer neu entwickelten exzentrischen Ermüdungsprüfmaschine für Federn eingeführt. Diese Versuchsanlage ist besonders geeignet, um Ermüdungsversuche an Federn mit einer hohen Steifigkeit durchzuführen, wie beispielsweise geschmiedete Federn. Es können viele verschiedene Laststufen auf die Federn angewandt werden, in dem diese kostengünstige Einrichtung verwandt wird. Darüber hinaus werden die Testprozedur für Ermüdungsversuche an Metallfedern und einige Ergebnisse, die mit der Versuchseinrichtung gewonnen wurden, präsentiert.


*Correspondence Address, Associate Prof. Dr. Kadir Cavdar, Department of Mechanical Engineering, Faculty of Engineering, University of Uludag, 16059 Bursa, Turkey. E-mail: ,

Assoc. Prof. Dr. Kadir Cavdar, born in 1969, received his BSc, MSc and PhD degrees in Mechanical Engineering from the University of Uludag, Bursa, Turkey in 1991, 1993 and 2000, respectively. He has worked on some research projects in Germany, at the Technical University of Brunswick (TU Braunschweig) and the Friedrich Alexander University of Erlangen-Nuremberg. His research areas are machine elements, CAD/CAE, design process, and mechanical and tribological behaviors of SMC composites. He is currently working as an Associate Professor in the Department of Mechanical Engineering, Faculty of Engineering, University of Uludag, Bursa, Turkey.


References

1 M.Meissner, H. J.Schorcht: Metal Springs – Fundamentals, Materials, Analysis, Design, and Computer Use, 2nd Ed., Springer, Berlin, Germany (2007)Search in Google Scholar

2 J. L.Porteiro: Spring Design Optimization with Fatigue, Graduate Thesis, University of South Florida, USA (2010)Search in Google Scholar

3 LesjöforsAB, Spring durability and spring fatigue: http://www.lesjoforsab.com/technical-information/durability.asp, Accessed 16 June 2017Search in Google Scholar

4 H.Pihtili, L.Ozler: The basic principles to be followed in test procedures of spring wire fatigue and fatigue tests, Engineer and Machine (1997), pp. 3841(in Turkish)Search in Google Scholar

5 The Engineering Toolbox: http://www.engineeringtoolbox.com/steel-endurance-limit-d_1781.html, Accessed 8 February 2017Search in Google Scholar

6 L.Del Llano-Vizcaya, C.Rubio-Gonzalez, G.Mesmacque, C.Cervantes-Hernandez: Multiaxial fatigue and failure analysis of helical compression springs, Engineering Failure Analysis13 (2006) No.8, pp. 1303131310.1016/j.engfailanal.2005.10.011Search in Google Scholar

7 B.Kaiser, C.Berger: Fatigue behavior of technical springs, Materials Science andEngineering Technology36 (2005), No.1, pp. 68569610.1002/mawe.200500940Search in Google Scholar

8 N.Tosun, L.Ozler: Design and manufacture of a laboratory-type spring fatigue testdevice, National Congress of Machine Design and Manufacture, UMTIK, Ankara, Turkey (2000)(in Turkish)Search in Google Scholar

9 N.Borms, D.De Schamphelaere, J.De Pauw, P.De Baets, W.De Waele: Conceptual design of a fretting fatigue testing device, Sustainable Construction and Design2 (2011)No. 3, pp. 370377Search in Google Scholar

10 J.De Pauw, P.De Baets, W.De Waele, R.Hojjati-Talemi: Design of a frettingfatigue test rig with compliant springs, Sustainable Construction and Design4 (2013) No. 2, pp. 1610.21825/scad.v4i2.1074Search in Google Scholar

Published Online: 2018-11-15
Published in Print: 2018-05-26

© 2018, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Influence of strength and cold forming on liquid metal embrittlement due to hot-dipping of high strength structural steels
  5. Structure and mechanical properties of ADC 12 Al foam–polymer interpenetrating phase composites with epoxy resin or silicone
  6. Induction and conduction thermography: From the basics to automated testing taking into account low and high residual stresses
  7. A case study: Design and manufacture of an eccentric spring fatigue testing device
  8. Effects of process parameters on the quality of PLA products fabricated by fused deposition modeling (FDM): surface roughness and tensile strength
  9. Corrosion behavior of alloy AA6063-T4 in HCl and NaOH solutions
  10. Validierung der Resonanten Frequenzsweep-Thermografie mittels einer POD-Analyse
  11. Supplementary finite element analysis in experimental testing of total hip stems
  12. Ratcheting testing of polytetrafluoroethylene (PTFE) under multiple-step compression
  13. Design of vehicle parts under impact loading using a multi-objective design approach
  14. Interfacial and physico-mechanical properties of walnut shell fiber reinforced polyester matrix composites
  15. Optimization of surface roughness via the Taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials
  16. Gegenüberstellung der induktiv angeregten Shearografie und Thermographie als zerstörungsfreie Prüfverfahren zur Detektion klebrelevanter Fehler an hochfesten Strukturklebungen und elastischen Dickschichtklebungen
  17. Effects of nano graphene particles on surface roughness and cutting temperature during MQL milling of AISI 430 stainless steel
Downloaded on 17.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/120.111177/html
Scroll to top button