Optimization and characterization of friction surfaced coatings of ferrous alloys
-
Mohammed Shariq
Abstract
In the present work, the scientists were successful in obtaining a friction surfaced coating of mild steel over mild steel, mild steel over stainless steel (AISI 304) and stainless steel over stainless steel using a low-cost conventional milling machine. A 22 factorial method with three replications was used to design the experiments. The influence of variation in rotational speed (1400 rpm and 1000 rpm) and table feed rate (4.17 mm/s and 2.67 mm/s) on coating width, thickness and interface temperature of the coating and substrate was investigated. Multi-response optimization was performed and the developed model was validated by confirmatory experiments. The results showed that, with an increase in rotational speed and table feed rate, width and thickness of the coating decreases, while temperature increases. An infrared (IR) camera provided thermographs that elaborated the distinct stages of heat dissipation during the process of coating formation. The bond integrity and strength of the coating was analyzed by bend tests and Vickers micro hardness test. The results revealed that a higher hardness value was obtained at the interface of the coating as compared to coating and interface.
Kurzfassung
In der vorliegenden Arbeit wurde erfolgreich versucht, eine Reibbelagschicht von Baustahl über Baustahl, Baustahl über rostfreiem Stahl (AISI 304) und rostfreiem Stahl über rostfreiem Stahl unter Verwendung einer kostengünstigen herkömmlichen Fräsmaschine zu erhalten. Eine 22-faktorielle Methode mit drei Wiederholungen wurde verwendet, um den Einfluss der Variation der Rotationsgeschwindigkeit (1400 U/min und 1000 U/min) und der Tischvorschubgeschwindigkeit (4,17 mm/s und 2,67 mm/s) auf Beschichtungsbreite, -dicke und -grenzfläche experimentell zu analysieren. Die Temperatur der Beschichtung und des Substrats wurden untersucht. Eine Multi-Response-Optimierung wurde durchgeführt und das entwickelte Modell wurde experimentell validiert. Die Ergebnisse zeigten, dass mit einer Zunahme der Rotationsgeschwindigkeit und der Tischvorschubgeschwindigkeit die Breite und Dicke der Beschichtung abnimmt, während die Temperatur ansteigt. Die Infrarot-Wärmebildkameras haben die verschiedenen Phasen der Wärmeableitung während des Beschichtungsvorgangs aufgezeichnet. Die Bindungsintegrität und Festigkeit der Beschichtung wurde durch Biegetests und Vickers-Mikrohärtetest analysiert. Die Ergebnisse zeigten, dass ein höherer Härtewert an der Grenzfläche der Beschichtung im Vergleich zu Beschichtung und Grenzfläche vorliegt.
References
1 J.Gandra, H.Krohn, R. M.Miranda, P.Vilaça, L.Quintino, J. F.Dos Santos: Friction surfacing – A review, Journal of Materials Processing Technology214 (2014), pp. 1062–109310.1016/j.jmatprotec.2013.12.008Suche in Google Scholar
2 G. M.Bedford, V. I.Vitanov, I. I.Voutchkov: On the thermo-mechanical events during friction surfacing of high-speed steels, Surface and Coatings Technology141 (2001), pp. 34–3910.1016/S0257-8972(01)01129-XSuche in Google Scholar
3 W. M.Thomas: An introduction to friction surfacing, Proceedings of the First International Conference on Surface Engineering, Brighton, UK (1986), pp. 261–277Suche in Google Scholar
4 E. D.Nicholas: Friction Surfacing, D.Olson et al. (Eds.), ASM Handbook – Welding, Brazing and Soldering, Vol. 6. ASM International, California, (1993), pp. 321–323Suche in Google Scholar
5 S. B.Dunkerton, W. M.Thomas: Repair by Friction Welding, Paper presented at the Proceedings of the Conference on Repair and Reclamation, London (1984)Suche in Google Scholar
6 M. L. Kramerde Macedo, G.Pinheiro, J. F.dos Santos, T. R.Strohaecker: Deposit by friction surfacing and its applications. Welding International24 (2010), pp. 422–43110.1080/09507110902844535Suche in Google Scholar
7 V. I.Vitanov, N.Javaid, D. J.Stephenson: Application of response surface methodology for the optimisation of micro-friction surfacing process, Surface and Coatings Technology204 (2010), pp. 3501–350810.1016/j.surfcoat.2010.04.011Suche in Google Scholar
8 D.Govardhan, A. C. S.Kumar, K. G. K.Murti, G. MadhusudhanReddy: Characterization of austenitic stainless steel friction surfaced deposit over low carbon steel, Materials and Design36 (2012), pp. 206–21410.1016/j.matdes.2011.07.040Suche in Google Scholar
9 H. K.Rafi, G. D. J.Ram, G.Phanikumar, K. P.Rao: Microstructural evolution during friction surfacing of tool steel H13, Materials and Design32 (2011), pp. 82–8710.1016/j.matdes.2010.06.031Suche in Google Scholar
10 R.Puli, G. D. JanakiRam: Microstructures and properties of friction surfaced coatings in AISI 440C martensitic stainless steel, Surface and Coatings Technology207 (2012), pp. 310–31810.1016/j.surfcoat.2012.07.001Suche in Google Scholar
11 H. K.Rafi, K.Balasubramaniam, G.Phanikumar, K. P.Rao: Thermal profiling using infrared thermography in friction surfacing, Metallurgical and Materials TransactionsA42 (2011), pp. 3425–342910.1007/s11661-011-0750-8Suche in Google Scholar
12 A. W.Batchelor, S.Jana, S. C. P.Koh, C. S.Tan: The effect of metal type and multilayering on friction surfacing, Journal of Materials Processing Technology57 (1996), pp. 172–18110.1016/0924-0136(95)02057-8Suche in Google Scholar
13 P.Vilaca, J.Gandra, C.Vidal: Linear friction based processing technologies for aluminum alloys: surfacing, stir welding and stir channeling. Aluminium Alloys – New Trends in Fabrication and Applications (2012) 10.5772/52026Suche in Google Scholar
14 R.Puli, G. D. JanakiRam: Microstructures and properties of friction surfaced coatings in AISI 440C martensitic stainless steel, Surface and Coatings Technology207 (2012), pp. 310–31810.1016/j.surfcoat.2012.07.001Suche in Google Scholar
15 V. I.Vitanov, N.Javaid: Investigation of the thermal field in micro-friction surfacing. Surface and Coatings Technology204 (2010), pp. 2624–263110.1016/j.surfcoat.2010.02.003Suche in Google Scholar
16 V. I.Vitanov, N.Javaid, D. J.Stephenson: Application of response surface methodology for the optimisation of micro-friction surfacing process, Surface and Coatings Technology204 (2010), pp. 3501–350810.1016/j.surfcoat.2010.04.011Suche in Google Scholar
17 J.Gandra, R.Miranda, P.Vilaça: Performance analysis of friction surfacing. Journal of Materials Processing Technology212 (2012), pp. 1676–168610.1016/j.jmatprotec.2012.03.013Suche in Google Scholar
18 R.Puli, G. J.Ram: Dynamic recrystallization in friction surfaced austenitic stainless steel coatings, Materials Characterization74 (2012), pp. 49–5410.1016/j.matchar.2012.09.001Suche in Google Scholar
19 R.Puli, G. D. JanakiRam: Wear and corrosion performance of AISI 410 martensitic stainless steel coatings produced using friction surfacing and manual metal arc welding. Surface and Coatings Technology2012, pp. 1–710.1016/j.surfcoat.2012.06.075Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
- Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
- Tensile strength of 3D printed materials: Review and reassessment of test parameters
- Numerical calculation of stress concentration of various subsurface and undercutting pit types
- Chemical composition of chosen phase constituents in austempered ductile cast iron
- Investigation of initial yielding in the small punch creep test
- Optimization and characterization of friction surfaced coatings of ferrous alloys
- Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
- In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
- Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
- Thermography using a 1D laser array – From planar to structured heating
- Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
- Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
- High temperature compressive behavior of three-dimensional five-directional braided composites
- Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
- Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources
Artikel in diesem Heft
- Inhalt/Contents
- Contents
- Fachbeiträge/Technical Contributions
- An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers
- Model-based correlation between change of electrical resistance and change of dislocation density of fatigued-loaded ICE R7 wheel steel specimens
- Tensile strength of 3D printed materials: Review and reassessment of test parameters
- Numerical calculation of stress concentration of various subsurface and undercutting pit types
- Chemical composition of chosen phase constituents in austempered ductile cast iron
- Investigation of initial yielding in the small punch creep test
- Optimization and characterization of friction surfaced coatings of ferrous alloys
- Influence of the milling process on TiB2 particle reinforced Al-7 wt.-% Si matrix composites
- In-situ compaction and sintering of Al2O3 – GNP nanoparticles using a high-frequency induction system
- Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
- Thermography using a 1D laser array – From planar to structured heating
- Schichtdickenbestimmung von Oberflächenschutzsystemen für Beton mit Impulsthermografie
- Microstructure and mechanical properties of fly ash particulate reinforced AA8011 aluminum alloy composites
- High temperature compressive behavior of three-dimensional five-directional braided composites
- Dry sliding behavior of the aluminum alloy 8011 composite with 8 % fly ash
- Review on nanostructures from catalytic pyrolysis of gas and liquid carbon sources