Startseite Comparison of deep drawability of AA5754-H22 and AA6061-T6 aluminum alloys for automotive applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Comparison of deep drawability of AA5754-H22 and AA6061-T6 aluminum alloys for automotive applications

  • Mehmet Ipekoglu , Onur Erbas und Hamad Ul Hassan
Veröffentlicht/Copyright: 21. November 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Being one of the most commonly applied sheet metal forming processes in automotive industry, deep drawing technologies are challenged by the concerns of global warming for higher fuel economy requirements in the recent years. To reduce the weight of the vehicles in order to obtain fuel economy, lighter and safer materials are used in automotive industry. Aluminum alloys, due to their low density compared to steels, are an important group of materials, in particular for lightweight construction of vehicles. In this study, two different aluminum alloys, namely AA5754-H22 and AA6061-T6, are evaluated for their potential use in nonload bearing applications in commercial vehicles by comparing their deep drawability characteristics. For this purpose, they are characterized by uniaxial tensile and Nakajima tests. In the next step, the deep drawing experiments are performed under different levels of blankholder force. The distance of the cup center to the edge of the die is also evaluated to investigate the formability of the designed cup for commercial use and to obtain the required product quality.

Kurzfassung

Als einer der am häufigsten angewandten Metallblechumformprozesse im Fahrzeugbau bestehen bei den Tiefziehtechniken Herausforderungen bezüglich des Klimawandels in Bezug auf höhere Treibstoffwirtschaftlichkeitsanforderungen in den letzten Jahren. Um das Gewicht der Fahrzeuge für eine bessere Treibstoffwirtschaftlichkeit zu reduzieren, werden leichtere und sichere Werkstoffe in der Automobilindustrie verwendet. Aufgrund ihrer geringeren Dichte im Vergleich zu Stählen stellen Aluminiumlegierungen eine wichtige Werkstoffgruppe dar, insbesondere für den Fahrzeugleichtbau. In der diesem Beitrag zugrunde liegenden Studie wurden zwei verschiedene Aluminiumlegierungen, und zwar AA5754-H22 und AA6061-T6, bezüglich ihres potentiellen Gebrauchs für nicht lasttragende Anwendungen in kommerziellen Fahrzeugen evaluiert, indem ihre Tiefzieheigenschaften verglichen wurden. Zu diesem Zweck wurden sie mittels einachsiger Zugversuche und sogenannter Nakajima-Tests charakterisiert. Im nächsten Schritt wurden die Tiefziehexperimente unter verschiedenen Niveaus der Niederhaltekraft durchgeführt. Der Abstand des Zentrums zur Kante der Form wurde ebenfalls herangezogen, um die Formbarkeit der designten Tiefziehform für die kommerzielle Anwendung zu untersuchen und um die erforderliche Produktqualität zu erreichen.


*Correspondence Address, Assist. Prof. Dr. Mehmet Ipekoglu, Department of Mechatronic Systems Engineering, Faculty of Engineering, Turkish-German University, Şahinkaya Caddesi No:86 Beykoz, 34820 Istanbul, Turkey, E-mail:

Assist. Prof. Dr. Mehmet Ipekoglu, born in 1978, graduated with a BSc, MSc and Phd in Mechanical Engineering from Bogazici University, Istanbul, Turkey, in 2001, 2004 and 2011, respectively. Since 2012, he has been working as an Assistant Professor in the Department of Mechatronic Systems Engineering of the Turkish-German University, Istanbul, Turkey.

Onur Erbas, born in 1988, graduated with a BSc in Manufacturing Engineering fromIstanbul Technical University, Turkey, in 2012 and a MSc in Manufacturing Technology from the Turkish-German University, Istanbul, Turkey, in 2014.

Dr.-Ing. Hamad Ul Hassan graduated with a BSc in Mechanical Engineering from University of Engineering and Technology, Taxila, Pakistan, in 2007 and a MSc in Computational Engineering from Ruhr-Universität Bochum, Germany, in 2011. He obtained his PhD in Mechanical Engineering from Technical University Dortmund, Germany in 2016. Since March 2016, he has been working as a group leader in the Department of Micromechanical and Macroscopic Modeling, ICAMS, Ruhr-Universität Bochum, Germany.


References

1 K.Lange: Handbook of Metal Forming, Society of Manufacturing Engineers, Michigan, USA (2006)Suche in Google Scholar

2 T.Küçükömeroğlu, H.Yılmaz, M. S.Aktarer: The effect of tool press force to weldability of AA5754 and AA6061 alloys with friction stir welding method, Pamukkale University Journal of Engineering Sciences19 (2013), No. 7, pp. 28128610.5505/pajes.2013.92408Suche in Google Scholar

3 M.Kleiner, M.Geiger, A.Klaus: Manufacturing of lightweight components by metal forming, Manufacturing Technology52 (2003), No. 2, pp. 52154210.1016/S0007-8506(07)60202-9Suche in Google Scholar

4 W. S.Miller, L.Zhuang, J.Bottema, A. J.Wittebrood, P.De Smet, A.Haszler, A.Vieregge: Recent development in aluminium alloys for the automotive industry, Materials Science and EngineeringA280 (2000), pp. 374910.1016/S0921-5093(99)00653-XSuche in Google Scholar

5 N. L.Sukiman, X.Zhou, N.Birbilis, A. E.Hughes, J. M. C.Mol, S. J.Garcia, X.Zhou, G. E.Thompson: Durability and corrosion of aluminium and its alloys: Overview, property space, techniques and development, Z.Ahmad (Ed.): Aluminium Alloys – New Trends in Fabrication and Applications (2012), pp. 479710.5772/53752Suche in Google Scholar

6 P. A.Friedman, S. G.Luckey, W. B.Copple, R.Allor, C. E.Miller, C.Young: Overview of superplastic forming research at Ford motor company, Journal of Materials Engineering and Performance13 (2004), No. 6, pp. 67067710.1361/10599490421277Suche in Google Scholar

7 D. R.Kumar: Formability analysis of extra-deep drawing steel, Journal Materials Processing Technology130 (2002), pp. 314110.1016/S0924-0136(02)00789-6Suche in Google Scholar

8 C.Girjob, G.Racz, O.Bologa: The determination of forming limit curve using a modular device, Academic Journal of Manufacturing8 (2010), pp. 3944Suche in Google Scholar

9 T. B.Stoughton, X.Zhu: Review of theoretical models of the strain-based FLD and their relevance to the stress-based FLD, International Journal of Plasticity20 (2004), pp. 1463148610.1016/j.ijplas.2003.11.004Suche in Google Scholar

10 S.Ahmadi, A. R.Eivani, A.Akbarzadeh: Experimental and analytical studies on the prediction of forming limit diagrams, Computational Materials Science44 (2009), pp. 1252125710.1016/j.commatsci.2008.08.008Suche in Google Scholar

11 R.Narayanasamy, C. SathiyaNarayanan: Forming, fracture and wrinkling limit diagram for if steel sheets of different thickness, Materials Design29 (2008), pp. 1467147510.1016/j.matdes.2006.09.017Suche in Google Scholar

12 D. W. A.Rees: Sheet orientation and forming limits under diffuse necking, Applied Mathematical Modelling20 (1996), No. 8, pp. 62463510.1016/0307-904X(96)00010-8Suche in Google Scholar

13 S. P.Keeler: Determination of forming limits in automotive stampings, Sheet Metal Industry42 (1965), pp. 68369110.4271/650535Suche in Google Scholar

14 K.Nakajima, T.Kikuma, K.Hasuka: Study on the formability of steel sheets, Yawata Technical Report, Tokyo, Japan, 284 (1971), pp. 678680Suche in Google Scholar

15 T.Altan, A. E.Tekkaya: Sheet Metal Forming Fundamentals, ASM International, Materials Park, Ohio, USA (2012)10.31399/asm.tb.smff.9781627083164Suche in Google Scholar

16 G.Ramesh, G. C. M.Reddy: Analysis of optimization of blank holding force in deep drawing by using LS DYNA, International Journal of Engineering Research and Applications3 (2013), No. 4, pp. 1975199510.1.1.377.8221Suche in Google Scholar

17 H. I.Demirci, C.Esner, M.Yasar: Effect of the blank holder force on drawing of aluminium alloy square cup: Theoretical and experimental investigation, Journal of Materials Processing Technology206 (2008), pp. 15216010.1016/j.jmatprotec.2007.12.010Suche in Google Scholar

18 S.Raju, G.Ganesan, R.Karthikeyan: Influence of variables in deep drawing of AA 6061 sheet, Transactions of Nonferrous Metals Society20 (2010), pp. 1856186210.1016/S1003-6326(09)60386-1Suche in Google Scholar

19 H.Herdawandi, D. S.Wilkinson, M.Niewczas: The Portevin-Le Chatelier (PLC) effect and shear band formation in an AA5754-H22 alloy, Acta Materialia55 (2007), pp. 4151416010.1016/j.actamat.2007.03.007Suche in Google Scholar

20 S.Aleksandrović, M.Stefanović, D.Adamović, V.Lazić: Variation of normal anisotropy ratio “r” during plastic forming, Journal of Mechanical Engineering55 (2009), No. 6, pp. 392399Suche in Google Scholar

21 F.Ozturk, E.Esener, S.Toros, R. C.Picu: Effects of aging parameters on formability of 6061-O alloy, Materials Design31 (2010), pp. 4847485210.1016/j.matdes.2010.05.050Suche in Google Scholar

22 H.Zein, M.El-Sherbiny, M.Abd-Rabou, M.El Shazly: Effect of die design parameters on thinning of sheet metal in the deep drawing process, American Journal of Mechanical Engineering1 (2013), No. 2, pp. 202910.12691/ajme-1-2-1Suche in Google Scholar

Published Online: 2017-11-21
Published in Print: 2017-11-15

© 2017, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Determination of global and local cleavage fracture characteristics of high strength bolt steels
  5. Electroplating Ni-doped Mn-Co films on AISI 430 stainless steel as interconnects in solid oxide fuel cells (SOFC)
  6. Influence of surface microstructure and chemical compositions on grooving corrosion of carbon steel welded joints
  7. Method for determining the strain rate sensitivity factor for the Johnson-Cook model in Charpy tests
  8. Optimizing the visibility of X-ray phase grating interferometry
  9. Friction and wear properties of nano-carbon reinforced Cu/Ti3SiC2/C nanocomposites
  10. Influence of austenization temperature on microstructure and mechanical properties of a new ultra-high strength low alloyed steel
  11. Microstructural and mechanical characterization of the parabolic spring steel 51CrV4
  12. Comparison of deep drawability of AA5754-H22 and AA6061-T6 aluminum alloys for automotive applications
  13. Transformation of ferrite/carbide into austenite during continuous heating of a 100Cr6 bearing steel
  14. Effect of TiO2 nanoparticles on the microstructure evolution and crystallographic texture in magnesium
  15. Mechanical behavior of single-lap and double-lap adhesive joined composite parts
  16. FE simulation of plastic collapse and geometrical factors affecting the bending response of a tubular aluminum beam
  17. Effect of spark plasma sintering temperature on structure and phase composition of Ti-Al-Nb-based alloys
  18. Behavior of a graphene/epoxy composite used as thermal interface material for LED heat dissipation
  19. Introducing gear ratings and AGMA conversion factors for the steel spur gear design under bending fatigue
  20. Partial replacement of carbon black by nanoclay in butyl rubber compounds for tubeless tires
  21. Wear behavior of an epoxy/HNT composite
  22. Characterization and properties of industrial polymer matrix composite sanitarywares
  23. Normal deformation measurement of free surfaces on rocks under biaxial compression
Heruntergeladen am 26.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111100/html?lang=de
Button zum nach oben scrollen