Startseite Behavior of a graphene/epoxy composite used as thermal interface material for LED heat dissipation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Behavior of a graphene/epoxy composite used as thermal interface material for LED heat dissipation

  • Yin Zhang und Mingshan Zhang
Veröffentlicht/Copyright: 21. November 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Heat dissipation plays an important role in improving luminous efficiency and reliability for light emitting diode (LED) devices. In this paper, graphene/epoxy composite is synthesized and used as thermal interface material for LED heat dissipation enhancement. Experiment is conducted to test the interface resistances of the novel composite materials with different graphene mixing ratios. Moreover, the thermal performances and junction temperatures of LED device with and without such thermal interface materials are analyzed and compared to show the heat dissipation effect of the proposed composite thermal interface material. The results show that thermal conductivity of graphene/epoxy composite increases with growing graphene mixing ratio and the interface resistance can be decreased by more than 70 % with the composite TIM. The case study indicates that junction temperature decreases from 72 °C to 67 °C for a 10 W power LED after using TIM, and such temperature difference becomes larger for higher LED power. Furthermore, with graphene/epoxy composite thermal interface material, temperature is distributed more uniformly in the heat sink, also benefitting LED heat dissipation. This work is important for practical heat sink design and optimization for LED equipment.

Kurzfassung

Die Wärmeabgabe hat eine wichtige Bedeutung, um die Beleuchtungseffizienz und Zuverlässigkeit von Leuchtdioden (Light Emitting Diode (LED)) zu verbessern. In der diesem Beitrag zugrunde liegenden Studie wurde ein Graphen-Epoxid-Komposit synthetisiert und als thermisches Interface-Material (TIM)) zur Verbesserung der Wärmeableitung von LEDs eingesetzt. Es wurden Experimente durchgeführt, um die Interface-Widerstände des neuen Kompositmaterials mit verschiedenen Graphenmischungsverhältnissen zu prüfen. Darüber hinaus wurden die thermischen Eigenschaften und die Verbindungstemperaturen der LED mit und ohne solcher thermischen Interface-Materialien analysiert und verglichen, um den Wärmeableitungseffekt des propagierten thermischen Interface-Materiales zu zeigen. Die Ergebnisse zeigen, dass die thermische Leitfähigkeit des Graphen-Epoxid-Komposites mit wachsenden Graphen-Mischungsverhältnissen zunimmt und dass der-Interface-Widerstand um mehr als 70 % mit dem Komposit-TIM abgesenkt werden kann. Die Studie deutet darauf hin, dass die Verbindungstemperatur von 72 °C auf 67 °C bei einer LED mit einer Leistung von 10 W infolge der Verwendung dieses Materials abnimmt, und dass diese Temperaturdifferenz für höhere LED-Leistungen größer wird. Darüber hinaus wird die Temperatur gleichmäßiger mit dem TIM in der Wärmesenke verteilt, was die LED-Wärmeabgabe ebenfalls verbessert. Diese Arbeit ist für das praktische Design von Wärmesenken und die Optimierung von LED-Anlagen wichtig.


*Correspondence Address, Prof. Dr. Mingshan Zhang, Director, South Southwest Minzu University, Room 119, Building 28, No. 16, South Section 4, Yihuan Road, Chengdu 610041, P. R. China, E-mail:

Yin Zhang, born in 1988, is a lecturer at the College of Architecture and Environment, Sichuan University, Chengdu, China. He received his PhD degree in Mechanical Engineering from Tsinghua University, Beijing, China in 2016. His research interests include thermodynamic analysis, heat and mass transfer and applied thermal materials.

Mingshan Zhang, born in 1963, is Professor in the Research Institute of Nationalities, Southwest Minzu University, Chengdu, China. He received his PhD degree in System Engineering and Management from Southwest Jiaotong University, Chengdu, China in 1998. Now, he is the research leader in system analysis and optimization in Sichuan Province in China.


References

1 Y.Zhang, X.Wang, S. W.Zhuo, Y. P.Zhang: Pre-feasibility of building cooling heating and power system with thermal energy storage considering energy supply–demand mismatch, Applied Energy167 (2016), pp. 12513410.1016/j.apenergy.2016.01.040Suche in Google Scholar

2 K.Kang, B.Kim, M. H.Seo, S.Cho, S.Lee, H. S.Hong: Electrolytic recovery of tin from waste lead frames: Use of aqueous HCl leaching solution as electrolyte, Materials Testing55 (2013), No. 2, pp. 13513810.3139/120.110415Suche in Google Scholar

3 P. E.Luis, O.Jose, P.Christine: A review on buildings energy consumption information, Energy and Buildings40 (2008), pp. 39439810.1016/j.enbuild.2007.03.007Suche in Google Scholar

4 S. J.Park, D.Jang, K. S.Lee: Thermal performance and orientation effect of an inclined cross-cut cylindrical heat sink for LED light bulbs, International Journal of Heat and Mass Transfer103 (2016), pp. 1371137710.1016/j.ijheatmasstransfer.2016.08.056Suche in Google Scholar

5 J.Wang, X. Y.Zhao, Y. X.Cai, C.Zhang, W. W.Bao: Experimental study on the thermal management of high-power LED headlight cooling device integrated with thermoelectric cooler package, Energy Conversion and Management101 (2015), pp. 53254010.1016/j.enconman.2015.05.040Suche in Google Scholar

6 C. H.Huang, G. J.Wang: A design problem to estimate the optimal fin shape of LED lighting heat sinks, International Journal of Heat and Mass Transfer106 (2017), pp. 1205121710.1016/j.ijheatmasstransfer.2016.10.101Suche in Google Scholar

7 H. C.Wang, N. E.Jewell-Larsen, A. V.Mamishev: Thermal management of microelectronics with electrostatic fluid accelerators, Applied Thermal Engineering51 (2013), pp. 19021110.1016/j.applthermaleng.2012.08.068Suche in Google Scholar

8 C. H.Huang, G. Y.Fan: Determination of relative positions and phase angle of dual piezoelectric fans for maximum heat dissipation of fin surface, International Journal of Heat and Mass Transfer92 (2016), pp. 52353810.1016/j.ijheatmasstransfer.2015.09.006Suche in Google Scholar

9 D.Jang, S. H.Yu, K. S.Lee: Multidisciplinary optimization of a pin-fin radial heat sink for LED lighting applications, International Journal of Heat and Mass Transfer55 (2012), pp. 51552110.1016/j.ijheatmasstransfer.2011.11.016Suche in Google Scholar

10 A.Bar-Cohen, M.Iyengar, A. D.Kraus: Design of optimum plate-fin natural convective heat sinks, Journal of Electronic Packages25 (2003), pp. 20821610.1115/1.1568361Suche in Google Scholar

11 M. W.Jeong, S. W.Jeon, Y. C.Kim: Optimal thermal design of a horizontal fin heat sink with a modified-opening model mounted on an LED module, Applied Thermal Engineering91 (2015), pp. 10511510.1016/j.applthermaleng.2015.08.001Suche in Google Scholar

12 D.Jang, S. J.Yook, K. S.Lee: Optimum design of a radial heat sink with a finheight profile for high-power LED lighting applications, Applied Energy116 (2014), pp. 26026810.1016/j.apenergy.2013.11.063Suche in Google Scholar

13 Y.Lai, N. S.Cordero, F.Barthel, F.Tebbe, J.Kuhn, R.Apfelbeck: Liquid cooling of bright LEDs for automotive applications, Applied Thermal Engineering29 (2009), pp. 1239124410.1016/j.applthermaleng.2008.06.023Suche in Google Scholar

14 S. R.Nam, C. W.Jung, C.Choi, Y. T.Kang: Cooling performance enhancement of LED (light emitting diode) packages with carbon nanogrease, Energy60 (2013), pp. 19520310.1016/j.energy.2013.07.039Suche in Google Scholar

15 D.Kim, J. H.Lee, J.Kim, C. Y.Choi, W.Chung: Enhancement of heat dissipation of LED module with cupric-oxide composite coating on aluminum-alloy heat sink, Energy Conversion and Management106 (2015), pp. 95896310.1016/j.enconman.2015.10.049Suche in Google Scholar

16 R.Li, F.Peng, J.Guan, X. Z.Yan, S. Z.Liu, W. K.Zhang, X. L.Zhou: Pressure infiltration of boron nitride preforms with molten aluminum for low density heat sink materials, Journal of Material Science24 (2013), pp. 1175118010.1007/s10854-012-0901-8Suche in Google Scholar

17 C.Kim, Y.Kang: Cooling performance enhancement of LED (light emitting diode) using nano-pastes for energy conversion application, Energy76 (2014), pp. 46847610.1016/j.energy.2014.08.039Suche in Google Scholar

18 M.Devarajan, S.Subramani, A.Permal, O. Z.Yin: Performance testing of 3 W LED mounted on ZnO thin film coated Al as heat sink using dual interface method, IEEE Transactions on Electron Devices60 (2013), pp. 2290229510.1109/TED.2013.2261856Suche in Google Scholar

Published Online: 2017-11-21
Published in Print: 2017-11-15

© 2017, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Determination of global and local cleavage fracture characteristics of high strength bolt steels
  5. Electroplating Ni-doped Mn-Co films on AISI 430 stainless steel as interconnects in solid oxide fuel cells (SOFC)
  6. Influence of surface microstructure and chemical compositions on grooving corrosion of carbon steel welded joints
  7. Method for determining the strain rate sensitivity factor for the Johnson-Cook model in Charpy tests
  8. Optimizing the visibility of X-ray phase grating interferometry
  9. Friction and wear properties of nano-carbon reinforced Cu/Ti3SiC2/C nanocomposites
  10. Influence of austenization temperature on microstructure and mechanical properties of a new ultra-high strength low alloyed steel
  11. Microstructural and mechanical characterization of the parabolic spring steel 51CrV4
  12. Comparison of deep drawability of AA5754-H22 and AA6061-T6 aluminum alloys for automotive applications
  13. Transformation of ferrite/carbide into austenite during continuous heating of a 100Cr6 bearing steel
  14. Effect of TiO2 nanoparticles on the microstructure evolution and crystallographic texture in magnesium
  15. Mechanical behavior of single-lap and double-lap adhesive joined composite parts
  16. FE simulation of plastic collapse and geometrical factors affecting the bending response of a tubular aluminum beam
  17. Effect of spark plasma sintering temperature on structure and phase composition of Ti-Al-Nb-based alloys
  18. Behavior of a graphene/epoxy composite used as thermal interface material for LED heat dissipation
  19. Introducing gear ratings and AGMA conversion factors for the steel spur gear design under bending fatigue
  20. Partial replacement of carbon black by nanoclay in butyl rubber compounds for tubeless tires
  21. Wear behavior of an epoxy/HNT composite
  22. Characterization and properties of industrial polymer matrix composite sanitarywares
  23. Normal deformation measurement of free surfaces on rocks under biaxial compression
Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.111108/html
Button zum nach oben scrollen