Startseite Effect of static strain aging on the fatigue behavior of S275JRC steel
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of static strain aging on the fatigue behavior of S275JRC steel

  • Ahmet Bülbül , Ramazan Kaçar und Hayriye Ertek Emre
Veröffentlicht/Copyright: 21. Februar 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this study, the effect of static strain aging on the fatigue behavior of a mild steel (S275JRC) was evaluated. For this purpose, the 5 % prestrained mild steel was aged at a temperature of 160 °C for different intervals. The aging behavior was determined primarily for the as-received (AR) as well as in the homogenization and normalizing heat treated (H+N heat treated) condition. The yield stresses before and after aging process as well as the hardness values of the aged steels were measured for the assessment of the strain aging progress. The dynamic mechanical behavior of strain aged samples was also determined by fatigue test under the dynamic loads. An increase in the yield strength due to strain aging and hardness induced improvement in fatigue strength of the steel were observed.

Kurzfassung

In der diesem Beitrag zugrunde liegenden Studie wurde ein 5 % kaltverformter Kohlenstoffstahl S275JR bei einer Temperatur von 160 °C über verschiedene Zeitintervalle gealtert. Das Alterungsverhalten wurde vor allem für den Werkstoff im Anlieferungszustand sowie nach Homogenisierung und Normalisierung bestimmt. Hierzu wurden die Streckgrenzen vor und nach dem Alterungsprozess sowie die Härtewerte der gealterten Stähle gemessen, um die Wirkung des Alterungsprozesses zu ermitteln. Außerdem wurde das dynamische mechanische Verhalten der gealterten Proben in entsprechenden Schwingfestigkeitsversuchen bestimmt. Aufgrund der Alterung wurden ein Anstieg der Streckgrenze und eine Verbesserung der Schwingfestigkeit infolge der Härte festgestellt.


*Correspondence Address, Dr. Hayriye Ertek Emre, Department of Manufacturing Engineering, Technology Faculty of Karabük University, Karabük University, Karabük, 78050, Turkey, E-mail: ,

Ahmet Bülbül, born in 1986, received his MSc degree from the Department of Manufacturing Engineering, Graduate School of Natural and Applied Sciences, Karabük University, Turkey, in 2014.

Prof. Dr. Ramazan Kaçar, born in 1969, received his PhD from the University of Leeds, United Kingdom. He is Professor of Manufacturing Engineering in the Technology Faculty of Karabük University in Turkey. He has more than 10 years experience in welding metallurgy and materials science.

Dr. Hayriye Ertek Emre, born in 1986, received her PhD from Karabük University, Turkey. She is Research Assistant for Manufacturing Engineering in the Technology Faculty of Karabük University in Turkey. Her research is focused on resistance spot welding and AHSS steels.


References

1 X.Qiang, X.Jiang, F. S. K.Bijlaard, H.Kolstein: Mechanical properties and design recommendations of very high strength steel S960 in fire, Engineering Structures112 (2016), pp. 607010.1016/j.engstruct.2016.01.008Suche in Google Scholar

2 S.Hosseini, A.Heidarpour, F.Collins, C. R.Hutchinson: Effect of strain ageing on the mechanical properties of partially damaged structural mild steel, Construction and Building Materials77 (2015), pp. 839310.1016/j.conbuildmat.2014.12.021Suche in Google Scholar

3 W.Schäf, M.Marx, A. F.Knorr: Influence of microstructural barriers on small fatigue crack growth in mild steel, International Journal of Fatigue57 (2013), pp. 869210.1016/j.ijfatigue.2012.11.006Suche in Google Scholar

4 S.Beretta, M.Carboni: Variable amplitude fatigue crack growth in a mild steel for railway axles: Experiments and predictive models, Engineering Fracture Mechanics78 (2011), No. 5, pp. 84886210.1016/j.engfracmech.2010.11.019Suche in Google Scholar

5 C. L.Walters: The effect of low temperatures on the fatigue of high-strength structural grade steels, Procedia Materials Science3 (2014), pp. 20921410.1016/j.mspro.2014.06.037Suche in Google Scholar

6 C. L.Walters, A.Alvaro, J.Maljaars: The effect of low temperatures on the fatigue crack growth of S460 structural steel, International Journal of Fatigue82 (2016), No. 1, pp. 11011810.1016/j.ijfatigue.2015.03.007Suche in Google Scholar

7 T.Ślęzak, T.Śnieżek: A comparative LCF study of S960QL high strength steel and S355J2 mild steel, Procedia Engineering114 (2015), pp. 788510.1016/j.proeng.2015.08.044Suche in Google Scholar

8 R.Pawliczek, M.Prażmowski: Study on material property changes of mild steel S355 caused by block loads with varying mean stress, International Journal of Fatigue80 (2015), pp. 17117710.1016/j.ijfatigue.2015.05.019Suche in Google Scholar

9 A. M. P.Jesus, R.Matos, B. F. C.Fontoura, C.Rebelo, L. S.Silva, M.Veljkovic: A comparison of the fatigue behavior between S355 and S690 steel grades, Journal of Constructional Steel Research79 (2012), pp. 14015010.1016/j.jcsr.2012.07.021Suche in Google Scholar

10 K.Prasad, M.Srinivas, S. V.Kamat: Influence of mixed mode I/III loading on dynamic fracture toughness of mild steel at room and low temperatures, Materials Science and Engineering A590 (2014), pp. 545910.1016/j.msea.2013.09.099SSuche in Google Scholar

11 S.Gündüz: Static strain ageing behaviour of dual phase steels, Mater. Sci. Eng. A486 (2008), pp. 637110.1016/j.msea.2007.08.056Suche in Google Scholar

12 M.Türkmen, S.Gündüz: Martensite morphology and strain aging behaviours in intercritically treated low carbon steel, Ironmaking and Steelmaking38 (2011), pp. 34635210.1179/1743281211Y.0000000002Suche in Google Scholar

13 A.Bülbül: An Effect of Static Aging on the Heavy Construction Wheel Rim, Master Thesis, Karabük University, Karabük, Turkey (2014) (in Turkish)Suche in Google Scholar

14 S.Serajzadeh: Static Strain Ageing, In: R.Colás, G. E.Totten, eds. Encyclopedia of Iron, Steel and Their Alloys, CRC Press, Boca Raton, USA, (2013), pp. 5778Suche in Google Scholar

15 J. D.Baird: The effects of strain aging due to interstitial solutes on mechanical properties of metals, Metallurgical Reviews16 (1971), No. 1, pp. 11810.1179/mtlr.1971.16.1.1Suche in Google Scholar

16 J. D.Baird: Strain aging of steel: A critical review, Iron and Steel36 (1963), pp. 186192Suche in Google Scholar

17 B.Soenen, A. K.De, S.Vandeputte, B. C.De Cooman: Competition between grain boundary segregation and Cottrell atmosphere formation during static strain aging in ultra-low carbon bake hardening steels, Acta Materilia52 (2004), No. 12, pp. 3483349210.1016/j.actamat.2004.03.046Suche in Google Scholar

18 N.Tsuchida, E.Baba, K.Nagai, Y.Tomota: Effects of interstitial solute atoms on the very low strain-rate deformations for an IF steel and an ultra-low carbon steel, Acta Materialia53 (2005), No. 2, pp. 26527010.1016/j.actamat.2004.09.019Suche in Google Scholar

19 A. H.Cottrell, B. A.Bilby: Dislocation theory of yielding and strain aging of iron, Proceedings of the Physical Society62 (1949), No. 1, pp. 496210.1088/0370-1298/62/1/308Suche in Google Scholar

20 D. V.Wilson, B.Russel: The contribution of precipitation to strain aging in low carbon steels, Acta Metallurgica8 (1960), No. 7, pp. 46847910.1016/0001-6160(60)90033-XSuche in Google Scholar

21 S.Graff, S.Forest, J. L.Strudel, C.Prioul, P.Pilvin, J. L.Béchade: Strain localization phenomena associated with static and dynamic strain ageing in notched specimens: Experiments and finite element simulations, Materials Science and Engineering A387–389 (2004), pp. 18118510.1016/j.msea.2004.02.083Suche in Google Scholar

22 R.Kaçar, S.Gündüz: Increasing the strength of AISI430 ferritic stainless steel by static strain ageing, Kovove Material47 (2009), No. 3, pp. 17Suche in Google Scholar

23 W.Karlsen, M.Ivanchenko, U.Ehrnsten, Y.Yagodzinskyy, H.Hanninen: Microstructural manifestation of dynamic strain aging in AISI 316 stainless steel, Journal of Nuclear Materials395 (2009), No. 1–3, pp. 15616110.1016/j.jnucmat.2009.10.047Suche in Google Scholar

24 P.Verma, G. S.Rao, P.Chellapandi, G. S.Mahobia, K.Chattopadhyay, N. C. SanthiSrinivas, V.Singh: Dynamic strain ageing, deformation, and fracture behavior of modified 9Cr-1Mo steel, Materials Science and Engineering A621 (2015), pp. 395110.1016/j.msea.2014.10.011Suche in Google Scholar

25 P. A. G.Piloto, P. VilaReal, L.Mesquita, M. A. P.Vaz: Steel mechanical properties evaluated at room temperature after being submitted at fire condition, O.Ural, V.Abrantes, A.Tadeu: Proc. of the 30th IAHS Word Congress on Housing, Coimbra, Portugal (2002), pp. 2835Suche in Google Scholar

26 W. T. L.Buono, B. M.Gonzales, M. S.Andrade: Strain ageing of AISI 430 ferritic stainless steel, Scripta Materialia38 (1998), No. 2, pp. 18519010.1016/S1359-6462(97)00497-1Suche in Google Scholar

27 S.Gündüz, B.Demir, R.Kaçar: Effect of aging temperature and martensite by volume on strain aging behaviour of dual phase steel, Ironmaking and Steelmaking Products and Applications35 (2008), No. 1, pp. 636810.1179/174328107X203949Suche in Google Scholar

28 W. A.Herman, M. A.Erazo, L. R.Patto, M.Sekizawa, A. W.Pense: Strain ageing behaviour of microalloyed steels, Welding Research Council Bulletin322 (1987), pp. 113Suche in Google Scholar

29 D. B.Park, J. W.Lee, Y. S.Lee, K. T.Park, W. J.Nam: Effects of the annealing temperature and time on the microstructural evolution and corresponding the mechanical properties of cold-drawn steel wires, Metals and Materials International14 (2008) No. 1, pp. 596410.3365/met.mat.2008.02.059Suche in Google Scholar

30 E. V.Pereloma, V.Bata, R. I.Scott, R. M.Smith: Effect of Cr on strain ageing behaviour of low carbon steel, Materials Science and Engineering A527 (2010), No. 10–11, pp. 2538254610.1016/j.msea.2009.12.040Suche in Google Scholar

31 J. G.Kim, S.Hong, N.Anjabin, B. H.Park, S. K.Kim, K. G.Chin, S.Lee, H. S.Kim: Dynamic strain ageing of twinning-induced plasticity (TWIP) steel in tensile testing and deep drawing, Materials Science and Engineering A633 (2015), pp. 13614310.1016/j.msea.2015.03.008Suche in Google Scholar

32 S.Kim, J. R.Weertman: Investigation of microstructural changes in a ferritic steel caused by high temperature fatigue, Metallurgical Transactions A19 (1988), No. 4, pp. 999100710.1007/BF02628384Suche in Google Scholar

33 J. T.Evans, R. M.Douthwaite: Snoek ordering and rapid strain ageing in iron-nitrogen alloys, Acta Metallurgica21 (1973), No. 1, pp. 495410.1016/0001-6160(73)90218-6Suche in Google Scholar

34 T.Nakagawa, Y.Ikai: Strain ageing and fatigue limit in carbon steel, Fatigue of Engineering Materials and Structures2 (1979), No. 1, pp. 132110.1111/j.1460-2695Suche in Google Scholar

35 M.Hirose, N.Hasegawa, Y.Kato, J.Miyata: Effect of strain ageing on fatigue limit of low carbon steel, Journal of the Society of Materials Science25 (1976), No. 276, pp. 85185610.2472/jsms.25.851Suche in Google Scholar

36 G.Oates, D. V.Wilson: The effects of dislocation locking and strain ageing on the fatigue limit of low-carbon steel, Acta Metallurgica12 (1964), No. 1, pp. 213310.1016/0001-6160(64)90050-1Suche in Google Scholar

Published Online: 2017-02-21
Published in Print: 2017-03-02

© 2017, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions
  5. Corrosion resistance and mechanical properties of quenched and tempered 28MnCrB5 steel in two acidic environments
  6. Statistical analysis of burst requirements from regulations for composite cylinders in hydrogen transport
  7. Effects of charging conditions on the hydrogen related mechanical property degradation of a 3 Cr low alloyed steel
  8. Characterization of hollow glass sphere reinforced epoxy composites: Dynamical mechanical analysis and morphology
  9. Effect of mechanical anisotropy on the energy absorption capacity in thin-walled tubes
  10. Effect of Ti as a trace element on mechanical properties and microstructural evolution in direct austempered ductile cast iron
  11. Effect of static strain aging on the fatigue behavior of S275JRC steel
  12. Evaluation of residual stresses present in spirally welded API grade pipeline steel using the hole drilling method
  13. Influence of U-O bending process parameters on the friction coefficient
  14. Mechanical behavior of internal pressurized composite pipes jointed with embedded tubular sleeves
  15. Effect of cutting parameters on surface roughness and wire consumption during wire electro-discharge machining
  16. Prediction and controlling of roundness during the BTA deep hole drilling process: Experimental investigations and fuzzy modeling
  17. Reliability and sensitivity of visible liquid penetrant NDT for inspection of welded components
  18. Mechanical properties of pipeline steel welds
Heruntergeladen am 18.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110993/html
Button zum nach oben scrollen