Home Technology Mechanical properties of pipeline steel welds
Article
Licensed
Unlicensed Requires Authentication

Mechanical properties of pipeline steel welds

  • Zakir Tas
Published/Copyright: February 21, 2017
Become an author with De Gruyter Brill

Abstract

Pipeline systems are used as the most economical solution for the transportation of the media used in the oil and gas industry. The major fabrication process representing the period elapsed from production of the pipes to service installation is welding. The weld zone represents the most critical zone in terms of the material properties in the respective pipeline components. In addition to the chosen welding method, selection of the steel material and welding consumables appropriate for the selected material are of significant importance. Today, most of line pipes are manufactured according to API standards. Cost savings have been achieved by the reduction of the wall thickness, transportation and the welding processes. In this study, the mechanical properties of welded microalloyed X42, X52, X60, X65, and X70 steels, which are generally used in the oil and gas industry based on API standards, were examined by taking into consideration their microalloying elements and the carbon content. Then, these steels were joined by using submerged arc welding (SAW). The weld zones and changes in the post-weld mechanical properties were investigated. As expected, while tensile and hardness values were increased compared to base material, the toughness values decreased.

Kurzfassung

Pipeline-Systeme stellen die ökonomischste Lösung für den Transport der Medien der Öl- und Gasindustrie dar. Der Hauptherstellungsprozess in der Zeit zwischen der Rohrfertigung und der Inbetriebnahme ist das Schweißen. Die Schweißverbindung stellt die kritischste Zone hinsichtlich der Festigkeit der Komponenten dar. Zusätzlich zum gewählten Schweißverfahren, hat die Auswahl des Werkstoffes und des dazu passenden Zusatzwerkstoffes eine erhebliche Bedeutung. Heute werden die meisten Pipelines nach den API-Standards produziert. Hierbei wurde die Wanddicke durch die Verwendung hochfester Stähle reduziert und Kosteneinsparungen konnten sich durch die Werkstoffauswahl, den Transport und das Schweißen realisieren lassen. In der diesem Beitrag zugrunde liegenden Studie wurden die mechanischen Eigenschaften der mikrolegierten Stähle X42, X52, X60, X65 und X70, die allgemein in der Öl- und Gasindustrie für Pipelines basierend auf den API-Standards verwendet werden, untersucht, indem ihre Mikrolegierungselemente und ihre Kohlenstoffgehalte berücksichtigt wurden. Danach wurden diese Stähle mittels Unterpulverschweißens (Submerged Arc Welding (SAW)) verbunden. Es wurden die Schweißverbindungen und die mechanischen Eigenschaften nach dem Schweißen untersucht. Wie zu erwarten war, nahmen die Zähigkeitswerte ab, während die Zugeigenschaften und Härten im Vergleich zu den Grundwerkstoffen in den Schweißverbindungen zunahmen.


*Correspondence Address, Associate Prof. Dr. Zakir Tas, Bozok University, Vocation School of Technical Science, Machinery and Metal Technology Department, Esentepe Campus, Yozgat, Turkey, E-mail:

Associate Prof. Dr. Zakir Tas, born in 1963, received his BSC and MSc degrees at the Institute of Aeronautics and Astronautics, Technical University in Berlin, Germany, in 1989. He achieved his PhD degree in Materials Science and Engineering at Yıldız Technical University in Istanbul, Turkey, in 2004. Until 2008, he was employed as a researcher at the Institute for Advanced Technologies in Gebze, Turkey. Since 2008, he has been working as Associate Professor at University Bozok in Yozgat, Turkey. His research areas cover microstructure and mechanical properties of microalloyed steels, fracture mechanics, fiber composite plastics, friction and wear properties of materials.


References

1 M.Yalçın: Examination of Mechanical and Microstructural Properties of Welding Zone by HSLA Steels, MSc Thesis, Marmara University Istanbul, Turkey (2008), (İnce Taneli Yüksek Mukavemetli Yapı Çeliklerinde Kaynaklı Bölgenin Mekanik ve Mikroyapı Özelliklerinin İncelenmesi)Search in Google Scholar

2 G.Thieme: Fachkunde für Schweißer, Band 5, VEB Verlag Technik, Berlin, Germany (1988)Search in Google Scholar

3 http://www.smgb.de/downloads/Hoch_ultrahochfeste_Grobbleche.pdfSearch in Google Scholar

4 G.Schulze, H.Krafka, P.Neumann: Schweißtechnik, VDI Verlag GmbH, Düsseldorf, Germany (1996)Search in Google Scholar

5 M. Z.Mahmutoğlu: The Characterization of Microstructure and Mechanical Properties in the 0.003 Nb % and 0.005 V % Pipeline Steel, PhD thesis, ITU İstanbul, Turkey (2003), (in Turkish)Search in Google Scholar

6 U.Boese, F.Ippendorf: Das Verhalten der Stähle beim Schweißen, Teil II: Anwendung, DVS Verlag GmbH, Düsseldorf, Germany (2001)Search in Google Scholar

7 http://www.askaynak.com.tr/contents/32/20111204192045_lincoln-electric-sarf-malzemeleri.pdfSearch in Google Scholar

8 http://www.lincolnelectric.com/assets/global/Products/Consumable_SubmergedArcConsumables-Lincolnweld-LincolnweldP223/c51019.pdfSearch in Google Scholar

9 Z.Tas, N.Sönmez: Relationship between the microstructure and fracture toughness of microalloyed steels42 (2005), pp. 29030310.3139/147.100265Search in Google Scholar

10 http://web.itu.edu.tr/∼dikicioglu/Kaykabcelik.pdfSearch in Google Scholar

11 A.Gürsel: Defect detection capability of radiographic testing on petroleum pipe welds, İleri Teknoloji Bilimleri Dergisi (2013), pp. 5565 (in Turkish)Search in Google Scholar

12 H.Ada: Investigation of Defects of Welding Occurring in the Process of Welding of Pipes Using Oil Pipeline, MSc Thesis, Gazi University Ankara, Turkey (2006), (in Turkish)Search in Google Scholar

13 C.Meriç, B. S.Ünlü, S. S.Yılmaz, M.Yılmaz: The merging with welding of natural gas pipeline, Metal Makine (2006) pp. 407410 (in Turkish)Search in Google Scholar

14 N.Kahraman, B.Gülenç, A.Durgutlu: Investigation of the effect of electrode extension distance on microstructural and mechanical properties of low carbon steel welded with submerged arc welding, Gazi University Fen Bilimleri Dergisi18 (2005), No. 3, pp. 473480 (in Turkish)Search in Google Scholar

15 A. A.Akay, Y.Kaya, N.Kahraman: Surveying of welding zone of X60, X65 and X70 steels joined with submerged arc welding method, Karaelmas Fen ve Mühendislik Dergisi (2013), pp. 3442, (in Turkish)10.7212/zkufbd.v3i2.120Search in Google Scholar

16 I.Yükler: Metal of Weld, Marmara Technical University, Istanbul, Turkey (1994), (in Turkish)Search in Google Scholar

17 J. H.Kim, J. J.Oh, I. S.Hwang, D. J.Kim, T.Jeong: Fracture behavior of heat-effected zone in low alloy steels, Journal of Nuclear Materials299 (2001), pp. 13213910.1016/S0022-3115(01)00688-2Search in Google Scholar

18 W.Dahl: Praktikum der Werkstoffkunde, Band I: Grundlagen, RWTH Aachen, Germany (1992)Search in Google Scholar

19 A. A.Akay, Y.Kaya, N.Kahraman: Joining of materials with different properties through submerged arc welding process and destructive and non-destructive testing of the joints, Sakarya University Fen Bil. Dergisi17 (2013), pp. 8596 (in Turkish)10.5505/saufbe.2013.09797Search in Google Scholar

20 S.Kılınçer: Investigation of mechanical properties and weldability with submerged arc welding method of low carbon steel, MSc Thesis, Gazi University, Turkey (1993), (in Turkish)Search in Google Scholar

21 W.Marfels, L.Orth: Der Gasschweißer, Band 1, DVS-Verlag, Düsseldorf, Germany (1997)Search in Google Scholar

22 M.Asarkaya: Effect on Mechanical Properties of the Welding Methods Used in Ship Building, MSc Thesis, Sakarya University, Turkey (2006), (in Turkish)Search in Google Scholar

Published Online: 2017-02-21
Published in Print: 2017-03-02

© 2017, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Characteristics of modified martensitic stainless steel surfaces under tribocorrosion conditions
  5. Corrosion resistance and mechanical properties of quenched and tempered 28MnCrB5 steel in two acidic environments
  6. Statistical analysis of burst requirements from regulations for composite cylinders in hydrogen transport
  7. Effects of charging conditions on the hydrogen related mechanical property degradation of a 3 Cr low alloyed steel
  8. Characterization of hollow glass sphere reinforced epoxy composites: Dynamical mechanical analysis and morphology
  9. Effect of mechanical anisotropy on the energy absorption capacity in thin-walled tubes
  10. Effect of Ti as a trace element on mechanical properties and microstructural evolution in direct austempered ductile cast iron
  11. Effect of static strain aging on the fatigue behavior of S275JRC steel
  12. Evaluation of residual stresses present in spirally welded API grade pipeline steel using the hole drilling method
  13. Influence of U-O bending process parameters on the friction coefficient
  14. Mechanical behavior of internal pressurized composite pipes jointed with embedded tubular sleeves
  15. Effect of cutting parameters on surface roughness and wire consumption during wire electro-discharge machining
  16. Prediction and controlling of roundness during the BTA deep hole drilling process: Experimental investigations and fuzzy modeling
  17. Reliability and sensitivity of visible liquid penetrant NDT for inspection of welded components
  18. Mechanical properties of pipeline steel welds
Downloaded on 20.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/120.110997/html
Scroll to top button