Home Effect of thickness on structural, corrosion and mechanical properties of a thin ZrN film deposited by medium frequency (MF) reactive sputtering
Article
Licensed
Unlicensed Requires Authentication

Effect of thickness on structural, corrosion and mechanical properties of a thin ZrN film deposited by medium frequency (MF) reactive sputtering

  • Ayyalu Kavitha , Raman Kannan and Subramani Loganathan
Published/Copyright: December 15, 2016
Become an author with De Gruyter Brill

Abstract

Zirconium nitride (ZrN) thin films were prepared on stainless steel (SS) substrates by medium frequency (MF) reactive sputtering with gas ion source (GIS) by varying the deposition time and obtained thickness (tZrN) in the range of 1.25 to 3.24 μm. The effect of thickness on the structural and microstructural properties was studied using XRD and AFM. XRD characterization revealed that the texture of the ZrN thin films changes as a function of thickness. Both, the (111) and (200) peak, appear initially and (111) becomes more intense with increasing tZrN. AFM imaging revealed that the ZrN thin film coated with tZrN ≈ 3.24 μm shows larger grains that are uniformly distributed over the surface. An average hardness value of 19.79 GPa was observed for ZrN thin films having tZrN ≈ 3.24 μm. The ZrN thin films having tZrN ≈ 3.24 μm exhibits better adhesion strength up to 20 N. The electrochemical polarization studies indicated that the ZrN thin film having larger thickness shows improved corrosion resistance compared to SS in 3.5 % NaCl solution.

Kurzfassung

Für die diesem Beitrag zugrunde liegende Studie wurden dünne Filme aus Zirkonnitrid (ZrN) auf Substrate aus hochlegiertem Stahl mittels reaktiven Sputterns bei mittlerer Frequenz unter Verwendung einer Quelle mit ionisiertem Gas aufgebracht, wobei die Ablagerungszeit variiert wurde und verschiedene Dicken tZrN im Bereich von 1,25 bis 3,24 μm erreicht wurden. Es wurden die Auswirkungen der Variation der Dicke auf die strukturellen und mikrostrukturellen Eigenschaften mittels XRD und AFM untersucht. Die Charakterisierung mit XRD ergab, dass die Textur der ZrN-Filme sich als Funktion der Dicke tZrN verändert. Sowohl der (111) als auch der (200) Peak treten anfänglich auf und der (111) Peak wird mit zunehmendem tZrN intensiver. Die AFM-Bildgebung zeigte, dass der mit tZrN ≈ 3,24 μm aufgebrachte ZrN-Film größere Körner aufwies, die gleichmäßig über die Oberfläche verteilt waren. Für die ZrN-Filme mit tZrN ≈ 3,24 μm wurde ein durchschnittlicher Härtewert von 19.79 GPa festgestellt. Die dünnen ZrN-Filme mit tZrN ≈ 3,24 μm weisen eine bessere Adhäsionsfestigkeit von bis zu 20 N auf. Die elektrochemischen Polarisationsversuche deuten darauf hin, dass die dünnen ZrN-Filme mit einer größeren Dicke einen verbesserten Korrosionswiderstand gegenüber dem hochlegierten Stahl in einer 3,5 % NaCl-Lösung aufweisen.


*Correspondence Address, A. Kavitha, Department of Physics, University College of Engineering, Anna University, Dindigul 624622, India, E-mail:

Ayyalu Kavitha, born in 1981, is a PhD student in the Department of Physics, University College of Engineering, Anna University Campus, Dindigul, India. She obtained her Master degree in Physics from Madurai Kamraj University, Tamilnadu, India in 2003. Her primary research area is materials science and thin film technology.

Dr. Raman Kannan is currently working as Assistant Professor at Department of Physics, University College of Engineering, Anna University Campus, Dindigul, India. He obtained his PhD degree from Alagappa University, Karaikudi, Tamilnadu, India and his Post Doctoral Fellowship from the Department of Materials Science and Engineering of Cornell University, Ithaca; NY; USA. He is specialized in materials science, polymers, Li batteries and fuel cells.

Dr. Subramani Loganathan, born in 1963, is currently working as Group Manager in the Ion Plating Department, Titan Industries, Hosur, Tamilnadu, India. He obtained his PhD degree from the Indian Institute of Technology, Delhi, India. He is specialized in industrial tribology and thin film deposition.


References

1 C.-P.Liu, H.-G.Yang: Deposition temperature and thickness effects on the characteristics of DC-sputtered ZrNx films, Materials Chemistry and Physics86 (2004), pp. 37037410.1016/j.matchemphys.2004.03.026Search in Google Scholar

2 Wen-JunChou, Ge-PingYu, Jia-HongHuang: Corrosion resistance of ZrN films on AISI 304 stainless steel substrate, Surface and Coatings Technology167 (2003), pp. 596710.1016/S0257-8972(02)00882-4Search in Google Scholar

3 A.Fragiel, M. H.Staia, J.Muñoz-Saldaña, E. S.Puchi-Cabrera, C.Cortes-Escobedo, L.Cota: Influence of the N2 partial pressure on the mechanical properties and tribological behavior of zirconium nitride deposited by reactive magnetron sputtering, Surface and Coatings Technology202 (2008), pp. 3653366010.1016/j.surfcoat.2008.01.001Search in Google Scholar

4 E.Budke, J.Krempel-Hesse, H.Maidhof, H.Schussler: Decorative hard coatings with improved corrosion resistance, Surface and Coatings Technology112 (1999), pp. 10811310.1016/S0257-8972(98)00791-9Search in Google Scholar

5 H.Jimenez, E.Restrepo, A.Devia: Effect of the substrate temperature in ZrN coatings grown by the pulsed arc technique studied by XRD, Surface Coating and Technology201 (2006), pp. 1594160110.1016/j.surfcoat.2006.02.030Search in Google Scholar

6 I.-W.Kim, S.-J.Kim, D.-H.Kim, H.-W.Woo, M.-Y.Park, S.-W.Rhee: Fourier transform infrared spectroscopy studies on thermal decomposition of tetrakis-dimethyl-amido zirconium for chemical vapor deposition of ZrN, Korean Journal of Chemical Engineering21 (2004), No. 6, pp. 1256125910.1007/BF02719504Search in Google Scholar

7 R. P.Netterfield, P. J.Martin, D. R.McKenzie: Properties of ZrNx prepared by ion-assisted deposition, Journal of Materials Science Letters9 (1990), No. 8, pp. 97297410.1007/BF00722192Search in Google Scholar

8 M.Del Re, R.Gouttebaron, J. P.Dauchot, P.Leclere, G.Terwagne, M.Hecqa: Study of ZrN layers deposited by reactive magnetron sputtering, Surface and Coatings Technology174–175 (2003), pp. 24024510.1016/S0257-8972Ž03.00679-0Search in Google Scholar

9 Can XinTian, BingYang, JunHe, Hong JunWang, De JunFu: Structural and mechanical properties of CrNx coatings deposited by medium-frequency magnetron sputtering with and without ion source assistance, Journal of Nanomaterials1, 201110.1155/2011/534647Search in Google Scholar

10 G.Bruer, J.Szczyrbowski, G.Teschner: Mid frequency sputtering – A novel tool for large area coating, Surface and Coatings Technology94–95 (1997), pp. 65866210.1016/S0257-8972(97)00516-1Search in Google Scholar

11 YuXiang, MengHua, WangCheng-Biao, FuZhi-Qiang, LiuYang: Investigation of Ti/TiN multilayered films in a reactive mid-frequency dual-magnetron sputtering, Applied Surface Science253 (2007), pp. 3705371110.1016/j.apsusc.2006.08.002Search in Google Scholar

12 G. S.Kim, S. Y.Lee, J. H.Hahn, B. Y.Lee, J. G.Han, J. H.Lee, S. Y.Lee: Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings, Surface and Coatings Technology171 (2003), pp. 839010.1016/S0257-8972(03)00243-3Search in Google Scholar

13 H.-M.Tunga, J.-H.Huanga, D.-G.Tsai, C.-F.Ai, G.-P.Yu: Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment, Materials Science and Engineering A500 (2009), pp. 10410810.1016/j.msea.2008.09.006Search in Google Scholar

14 E. W.Niu, L.Li, G. H.Lv, H.Chen, W. R.Feng, S. H.Fan, S. Z.Yang, X. Z.Yang: Influence of substrate bias on the structure and properties of ZrN films deposited by cathodic vacuum arc, Materials Science and Engineering A460–461 (2007), pp. 13513910.1016/j.msea.2007.02.085Search in Google Scholar

15 U. C.Oh, Jung HoJe: Effects of strain energy on the preferred orientation of TiN thin films, Journal of Applied Physics74 (1993), No. 3, pp. 1692169610.1063/1.355297Search in Google Scholar

16 J. H.Huang, C. Y.Hsu, S. S.Chen, G. P.Yu: Effect of substrate bias on the structure and properties of ion-plated ZrN on Si and stainless steel substrates, Materials Chemistry and Physics77 (2002), pp. 142110.1016/S0254-0584(01)00494-1Search in Google Scholar

17 G.Lopez, M. H.Staia: High-temperature tribological characterization of zirconium nitride coatings, Surface and Coatings Technology200 (2005), pp. 2092209910.1016/j.surfcoat.2004.08.221Search in Google Scholar

18 W. C.Oliver, G. M.Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Material Research7 (1992), No. 6, pp. 1564158310.1557/JMR.1992.1564Search in Google Scholar

19 K.Ashok, B.Subramanian, P.Kuppusami, M.Jayachandran: Effect of substrate temperature on structural and materials properties of zirconium nitride films on D9 steel, Crystal Research Technology44 (2009), No. 5, pp. 51151610.1002/crat.200800630Search in Google Scholar

20 P. J.Burnett, D. S.Rickerby: The relationship between hardness and scratch adhesion, Thin Solid Films154 (1987), pp. 40341610.1016/0042-207X(89)90364-3Search in Google Scholar

21 ASTM C1624 – 05, American Society for Testing of Materials, Philadelphia, USA (2010)Search in Google Scholar

22 B.Subramanian, V.Swaminathan, M.Jayachandran: Microstructural, tribological and electrochemical corrosion studies on reactive DC magnetron sputtered zirconium nitride films with Zr interlayer on steel, Metal Material International18 (2012), No. 6, pp. 95796410.1007s/12540-012-6007-2Search in Google Scholar

Published Online: 2016-12-15
Published in Print: 2016-11-16

© 2016, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Tribologie – 50 Jahre interdisziplinäre Reibungs- und Verschleißforschung
  5. Synthetic method to investigate self-loosening of suspension fasteners considering nonlinear tire characteristics at the adhesion limit
  6. Salt fog corrosion behavior of friction stir welded AA2014-T651 aluminum alloy
  7. Improving the performance of cementless knee prosthesis coating through functionally graded material
  8. Processing and characterization of graphene nano-platelet (GNP) reinforced aluminum matrix composites
  9. Effect of thickness on structural, corrosion and mechanical properties of a thin ZrN film deposited by medium frequency (MF) reactive sputtering
  10. Influence of welding parameters on the fracture of PE300 polyethylene friction stir spot welds
  11. Weldability of 5754 aluminum alloy using a pulsed Nd:YAG micro scale laser
  12. Improving the visibility of phase gratings for Talbot-Lau X-ray imaging
  13. Vergleich von zerstörungsfreien und zerstörenden Prüfungen dünner Strukturklebungen in der Umformtechnik
  14. Fracture behavior of an empty hole using the digital laser dynamic caustic method under directional controlled blasting
  15. Effect of ZrSiO4 on the corrosion behavior of MgO-FeAl2O4 composite refractory materials
  16. Time dependent hardness and residual stress reduction in a shot-peened aluminum alloy 2024-T351
  17. A validation experiment on indium recovery by electrowinning of aqueous electrolytes: Optimization of electrolyte composition
  18. Qualitätssicherung von Fahrzeug-rädern aus Leichtmetallguss
  19. Comparison of electrical energy consumption for different material processing procedures
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110945/html
Scroll to top button