Startseite Impact Toughness of Friction Stir Welded Al-Mg Alloy*
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Impact Toughness of Friction Stir Welded Al-Mg Alloy*

  • Aleksandar Sedmak , Abdasalam Mohamed Mahdi Eramah , Srđan Tadić , Srđa Perković und Horia Dascau
Veröffentlicht/Copyright: 11. Oktober 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Al-Mg 5083 alloy was friction stir welded by varying welding variables, i. e., rotational speed, traversal speed and tool tilt angle. Welded specimens have been tested by the instrumented Charpy test to evaluate total absorbed energy, as well as the energy for crack initiation and the energy for crack growth. Subsequently, the fracture surface was examined by optical and scanning electron microscopy (SEM) to evaluate surface type of fracture, and to correlate the microstructure with the impact energy. Based on this, the optimum windows of FSW parameters for Al-Mg 5083 alloy welding have been defined.

Kurzfassung

Die Al-Mg-Legierung 5083 wurde rührreibgeschweißt unter verschiedenen Schweißbedingungen, hierzu wurden Rotationsgeschwindigkeit, Traversengeschwindigkeit und Werkzeugneigungswinkel variiert. Die geschweißten Proben wurden im instrumentierten Charpy-Versuch getestet, um die absorbierte Energie sowie die Energie für die Rissinitiierung und die Energie für Risswachstum zu bestimmen. Anschließend wurde die Bruchoberfläche mittels Licht- und Rasterelektronenmikroskopie untersucht, um den Oberflächentyp des Bruches zu bestimmen und die Mikrostruktur mit der Schlagenergie zu korrelieren. Darauf basierend wurden optimale Parameterbereiche für die Rührreibschweißung von Al-Mg-Legierung 5083 definiert.


**Correspondence Address Prof. Dr. Aleksandar Sedmak, Faculty of Mechanical Engineering, University of Belgrade Kraljice Marije 16, 11000 Belgrade, Serbia, E-mail:

Prof. Dr. Aleksandar Sedmak is a full professor at the Faculty of Mechanical Engineering, University of Belgrade, Serbia. He teaches academic courses in welding technologies, Finite elements methods and mechanics of materials. He is also a head of the Innovation Center in the Faculty of Mechanical Engineering, University of Belgrade, Serbia.

Abdsalam Mohamed Mahdi Eramah was a PhD student at the Faculty of Mechanical Engineering, University of Belgrade, Serbia, at the time this paper was written. The areas of his professional interest cover materials science applications in the marine and petroleum industry.

Srdjan Tadić is a research fellow at the Innovation Centre of the Faculty of Mechanical Engineering, University of Belgrade, Serbia. His main scientific areas of interest are materials science and metallurgy.

Srdja Perković is a member of the research staff at the Military Institute in Belgrade, Serbia, and trained in mechanical testing in the materials sciences. His areas of interest also cover fatigue testing and the behavior of welded joints.

Horia Dascau is Head of the Education and Training Department at the National R&D Institute for Welding and Material Testing (ISIM) in Timisoara, Romania. His professional attention is directed towards the welding sciences.

*

Presented during the 3rd International Conference on Welding Technologies and Exhibition (ICWET'14) in Manisa, Turkey


References

1 C. J.Dawes, W. H.Thomas: Friction stir process welds aluminum alloys. The process produces low-distortion, high-quality, low-cost welds on aluminum, Weld. J.75 (1996), pp. 4145Suche in Google Scholar

2 A. M. M.Eramah:Friction stir welding parameters influencing the fracture resistance of an Al5083 alloy welded joint, Doctoral thesis, University of Belgrade, 2014Suche in Google Scholar

3 A. M. M.Eramah, S.Tadić, A.Sedmak: Impact fracture response of friction stir welded Al-Mg alloy, Structural Integrity and Life13 (2013), pp. 171177Suche in Google Scholar

4 M.Tsujikawa, H.Somekawa, K.Higashi, H.Iwasaki, T.Hasegawa, A.Mizuta: Fatigue of welded magnesium alloy joints, Mater. Trans.45 (2004), pp. 41942210.2320/matertrans.45.419Suche in Google Scholar

5 Y. S.Sato, H.Kokawa: Distribution of tensile property and microstructure in friction stir weld of 6063 aluminum, Metall. Mater. Trans.32A (2001), pp. 30233031Suche in Google Scholar

6 L.Liu, H.Nakayama, S.Fukumoto, A.Yamamoto, H.Tsubakino: Microstructural evolution in friction stir welded 1050 aluminum and 6061 aluminum alloy, Mater Trans.45 (2004), pp. 2665266810.2320/matertrans.45.2665Suche in Google Scholar

7 Y. S.Sato, M.Urata, H.Kokawa, K.Ikeda: Hall-Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys, Mater. Sci. Eng. A354 (2003), pp. 29830510.1016/S0921-5093(03)00008-XSuche in Google Scholar

8 M.Nakai, N.Eguchi: Improvement of corrosion resistance of Al-Mg alloy plate joints through friction stir welding, Kobe Steel Eng. Rep. (Jpn.)54 (2004), pp. 6265Suche in Google Scholar

9 Y. S.Sato, S. H. C.Park, H.Kokawa: Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys, Metall. Mater. Trans.32A (2001), pp. 30333042Suche in Google Scholar

10 K. V.Jata, S. L.Semiatin: Continuous dynamic recrystallization during friction stir welding of high strength aluminum alloys, Scr. Mater.43 (2000), pp. 74374910.1016/S1359-6462(00)00480-2Suche in Google Scholar

11 B.Heinz, B.Skrotzki: Characterization of a friction-stir-welded aluminum alloy 6013, Metall. Mater. Trans. B33A (2002), pp. 489498Suche in Google Scholar

12 A. P.Reynolds: Flow visualization and simulation in FSW, Scr.Mater58 (2008), pp. 33834210.1016/j.scriptamat.2007.10.048Suche in Google Scholar

13 J. A.Schneider, A. C.NunesJr.: Characterization of plastic flow and resulting microtextures in a friction stir weld, Metall. Mater. Trans. B35 (2004), pp. 77778310.1007/s11663-004-0018-4Suche in Google Scholar

14 J.Schneider, R.Beshears, A. C.NunesJr.: Interfacial sticking and slipping in the friction stir welding process, Mater. Sci. Eng. A435 (2006), pp. 297304Suche in Google Scholar

15 D. P. P.Booth, M. J.Starink, I.Sinclair: Analysis of local microstructure and hardness of 13 mm gauge 2024-T351 AA friction stir welds, Mater. Sci. Technol.23 (2007), pp. 27628410.1179/174328407X157290Suche in Google Scholar

16 G. M.Xie, Z. Y.Ma, L.Geng: Development of a fine-grained microstructure and the properties of a nugget zone in friction stir welded pure copper, Scripta Mater.57 (2007), pp. 737610.1016/j.scriptamat.2007.03.048Suche in Google Scholar

17 L.Ke, L.Xing, J. E.Indacochea: Material flow patterns and cavity model in friction-stir welding of aluminum alloys, Metall. Mater. Trans. B35 (2004), pp. 15316010.1007/s11663-004-0105-6Suche in Google Scholar

Published Online: 2014-10-11
Published in Print: 2014-10-01

© 2014, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Inhalt
  3. Fachbeiträge/Technical Contributions
  4. Mechanical Properties of Laser Welded 2205 Duplex Stainless Steel*
  5. Corrosion Properties and Impact Toughness of 2205 Duplex Stainless Steel after TIG Welding*
  6. Finite Element Analysis of 2205 Duplex Stainless Steel Welds*
  7. Fatigue Cracking of Hybrid Plasma Gas Metal Arc Welded 2205 Duplex Stainless Steel*
  8. Effect of Process Parameters on Mechanical and Microstructural Properties of Arc Stud Welds*
  9. Influence of Welding Wire Selection on the Strength and Toughness of Welded Armor Steel Joints*
  10. Effect of Rotational Speed and Dwell Time on Mechanical Properties of Dissimilar AA1050-AA3105 Friction Stir Spot Welded Joints*
  11. Radiation Emission during SMAW Applications on SS304 and A36 Steels*
  12. Numerical and Experimental Determination of the Residual Stress State in Multipass Welded API 5L X70 Plates*
  13. Impact Toughness of Friction Stir Welded Al-Mg Alloy*
  14. Diffusion Welding of Thick Components Fabricated by Inserted Powder Injection Molding*
  15. An Investigation of TIG Welding of AZ31 Magnesium Alloy Sheets*
  16. Effects of Surface Finishing on the Mechanical Properties of Induction Welded Iron Based Sintered Compacts*
  17. Investigation of Mechanical Properties of MIG Brazed DP 600 Steel Joints Using Different Working Angles*
  18. Evaluation of HAZ Hardness in MMA Welding*
  19. Wear Behavior of Fe-C-Cr Based Hardfacing Alloys Dependent on Ferrovanadium and Ferrotungsten Addition*
  20. Mechanical Properties of Dissimilar and Similar Cold Metal Transfer Welded Galvanized Steel 1314 and Aluminum AA1050*
  21. The Effect Of Nugget Sizes On Mechanical Properties In Resistance Spot Welding Of SPA-C Atmospheric Corrosion Resistant Steel Sheets Used In Rail Vehicles*
  22. Microstructure and Mechanical Properties of AA 5083 and AA 6061 Welds Joined with AlSi5 and AlSi12 Wires*
  23. Torsional Behavior of AISI 420/AISI 4340 Steel Friction Welds
  24. Mechanical Properties of Pattern Welded 1075-15N20 Steels*
  25. Vorschau/Preview
  26. Vorschau
Heruntergeladen am 16.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110638/html?lang=de
Button zum nach oben scrollen