An Investigation of TIG Welding of AZ31 Magnesium Alloy Sheets*
-
Bilge Demir
Abstract
In this study, butt welding of commercial AZ31 magnesium alloy sheets has been investigated by using the tungsten inert gas welding process with alternating and pulsed current. Magnesium alloy welding, although well developed and understood, can present some problems, such as porosity, hot cracking, oxide formation, etc. Samples of the welded parts have been examined by optic microscopy and mechanic tests. Results showed that porosities and homogeneous micro size oxides were rarely found. Orientation of the weld microstructure in direction of the heat transfer were also rarely observed and equiaxed grain morphology was the dominant grain structure as in the base metals. In addition, fusion zone and HAZ of the welded samples have generally shown twins. This seems to be a very dominant grain type particularly in pulsed samples. Hot cracking was not observed in any samples. Results of mechanical tests showed that pulsed current seems to generate more favorable higher mechanical properties of weld joints than alternating current for magnesium alloys.
Kurzfassung
In dieser Studie wurde das Stumpfschweißen von Blechen aus der kommerziellen Magnesiumlegierung AZ31 mit dem Wolfram-Inertgas-Schweißverfahren mit Wechsel- und Impulsstrom untersucht. Das Schweißen von Magnesiumlegierungen, obwohl gut entwickelt und verstanden, könnte hinsichtlich Porosität, Heißrissbildung, Oxidbildung usw. problematisch sein. Schweißproben wurden lichtmikroskopisch und anhand mechanischer Tests untersucht. Ergebnisse zeigten, dass Porositäten und homogene Feinstoxide selten auftraten. Orientierungen des Schweißgefüges in Richtung der Wärmeübertragung wurde auch nur selten beobachtet. Äquiaxiale Kornmorphologie dominierte, ebenso wie im Grundwerkstoff. Darüber hinaus finden sich in der Schmelzzone und WEZ der geschweißten Proben generell Zwillinge. Dies scheint ein sehr dominanter Korntyp besonders in gepulsten Proben zu sein. Heißrissbildung wurde an keiner Probe beobachtet. Mechanische Tests zeigten für Magnesiumlegierungen, dass mit gepulsten Strömen scheinbar bessere mechanische Eigenschaften der Schweißverbindung erzielt werden als mit Wechselstrom.
References
1 P.Uslu, B.Demir, F.Hayat:Effect of the weld current on tensile shear properties of the RSW junctions of the AZ31 Mg alloy sheet, 6th International Advanced Technologies Symposium (IATS'11), Elazig (2011), pp. 1–4Search in Google Scholar
2 S.Hongxin, R.Qiu, J.Zhu, K.Zhang, H.Yu, G.Ding: Effects of welding parameters on the characteristics of magnesium alloy joint welded by resistance spot welding with cover plates, Materials and Design31 (2010), pp. 4853–485710.1016/j.matdes.2010.05.044Search in Google Scholar
3 L.Liu, C.Dong: Gas tungsten arc filler welding of AZ31 magnesium alloy, Materials Letters60 (2006), pp. 2194–21970.1016/j.matlet.2005.12.120Search in Google Scholar
4 W.Zhou, T. Z.Long, C. K.Mark: Hot cracking in tungsten inert gas welding of magnesium alloy AZ91D, Materials Science and Technology23 (2007), pp. 1294–129910.1179/174328407X213026Search in Google Scholar
5 D.Min, J.Shen, S.Lai: Effect of heat input on the microstructure and mechanical properties of tungsten inert gas arc butt welded AZ61 magnesium alloy plates, Materials Characterization60 (2009), pp. 1583–159010.1016/j.matchar.2009.09.010Search in Google Scholar
6 M. R.Barnett: Twinning and the ductility of magnesium alloys (Part I): “Tension” twins, Materials Science and Engineering A464 (2007), pp. 1–710.1016/j.msea.2006.12.037Search in Google Scholar
7 M. R.Barnett: A rationale for the strong dependence of mechanical twinning on grain size, Scripta Materialia59 (2008), pp. 696–69810.1016/j.scriptamat.2008.05.027Search in Google Scholar
8 L. J.Wei, C. D.Chen, Z.Hua: Twinning in weld HAZ of ZK21 commercial magnesium alloy, Trans. Nonferrous Met. Soc. China18 (2008), pp. 81–8510.1016/S1003-6326(10)60179-3Search in Google Scholar
9 American Welding Society:Welding Handbook, 7th Ed.Miami, Florida, AWS (1989)Search in Google Scholar
10 A.Stern, A.Munitz: Partially melted zone microstructural characterization from gas tungsten arc bead on plate welds of magnesium AZ91 alloy, J. Mater. Sci. Lett.18 (1999), pp. 853–85510.1023/A:1006640008914Search in Google Scholar
11 A.Munitz, C.Cotler, A.Stern, G.Kohn: Mechanical properties and microstructure of gas tungsten arc welded magnesium AZ91D plates, Mater. Sci. Eng. A302 (2001), pp. 68–7310.1016/j.matchar.2006.10.012Search in Google Scholar
12 L. M.Liu, Z. D.Zhang, Y.Shen, L.Wang: Effects of activating fluxes on TIG welding of magnesium Alloy, Acta Metall. Sin.42 (2006), pp. 399–40410.1179/174329307x213846Search in Google Scholar
13 L. M.Liu, Z. D.Zhang, G.Son, Y.Shen: Effect of cadmium chloride flux in active flux TIG welding of magnesium alloys, Mater. Trans.47 (2006), pp. 446–44910.2320/matertrans.47.446Search in Google Scholar
14 X.Cao, M.Jahazi, J. P.Immarigeon, W.Wallace: A review of laser welding techniques for magnesium alloys, Journal of Materials Processing Technology171 (2006), pp. 188–20410.1016/j.jmatprotec.2005.06.068Search in Google Scholar
15 T. P.Zhu, Z. W.Chen, W.Gao: Incipient melting in partially melted zone during arc welding of AZ91D magnesium alloy, Mater. Sci. Eng. A416 (2006), pp. 246–25210.1016/j.msea.2005.10.032Search in Google Scholar
16 P.Yang, Y.Yu, L.Chen, W.Mao: Experimental determination and theoretical prediction of twin orientations in magnesium alloy AZ31, Scripta Materialia50 (2004), pp. 1163–116810.1016/j.scriptamat.2004.01.013Search in Google Scholar
17 A.Durgutlu: The effect of current type on weld metal microstructure and impact strength in TIG welding of aluminum, J. Fac. Eng. Arch. Gazi Univ.24 (2009), pp. 155–160Search in Google Scholar
18 http://www.millerwelds.com/resources/tech_tips/TIG_tips/hints_tips.html.Search in Google Scholar
© 2014, Carl Hanser Verlag, München
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Mechanical Properties of Laser Welded 2205 Duplex Stainless Steel*
- Corrosion Properties and Impact Toughness of 2205 Duplex Stainless Steel after TIG Welding*
- Finite Element Analysis of 2205 Duplex Stainless Steel Welds*
- Fatigue Cracking of Hybrid Plasma Gas Metal Arc Welded 2205 Duplex Stainless Steel*
- Effect of Process Parameters on Mechanical and Microstructural Properties of Arc Stud Welds*
- Influence of Welding Wire Selection on the Strength and Toughness of Welded Armor Steel Joints*
- Effect of Rotational Speed and Dwell Time on Mechanical Properties of Dissimilar AA1050-AA3105 Friction Stir Spot Welded Joints*
- Radiation Emission during SMAW Applications on SS304 and A36 Steels*
- Numerical and Experimental Determination of the Residual Stress State in Multipass Welded API 5L X70 Plates*
- Impact Toughness of Friction Stir Welded Al-Mg Alloy*
- Diffusion Welding of Thick Components Fabricated by Inserted Powder Injection Molding*
- An Investigation of TIG Welding of AZ31 Magnesium Alloy Sheets*
- Effects of Surface Finishing on the Mechanical Properties of Induction Welded Iron Based Sintered Compacts*
- Investigation of Mechanical Properties of MIG Brazed DP 600 Steel Joints Using Different Working Angles*
- Evaluation of HAZ Hardness in MMA Welding*
- Wear Behavior of Fe-C-Cr Based Hardfacing Alloys Dependent on Ferrovanadium and Ferrotungsten Addition*
- Mechanical Properties of Dissimilar and Similar Cold Metal Transfer Welded Galvanized Steel 1314 and Aluminum AA1050*
- The Effect Of Nugget Sizes On Mechanical Properties In Resistance Spot Welding Of SPA-C Atmospheric Corrosion Resistant Steel Sheets Used In Rail Vehicles*
- Microstructure and Mechanical Properties of AA 5083 and AA 6061 Welds Joined with AlSi5 and AlSi12 Wires*
- Torsional Behavior of AISI 420/AISI 4340 Steel Friction Welds
- Mechanical Properties of Pattern Welded 1075-15N20 Steels*
- Vorschau/Preview
- Vorschau
Articles in the same Issue
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Mechanical Properties of Laser Welded 2205 Duplex Stainless Steel*
- Corrosion Properties and Impact Toughness of 2205 Duplex Stainless Steel after TIG Welding*
- Finite Element Analysis of 2205 Duplex Stainless Steel Welds*
- Fatigue Cracking of Hybrid Plasma Gas Metal Arc Welded 2205 Duplex Stainless Steel*
- Effect of Process Parameters on Mechanical and Microstructural Properties of Arc Stud Welds*
- Influence of Welding Wire Selection on the Strength and Toughness of Welded Armor Steel Joints*
- Effect of Rotational Speed and Dwell Time on Mechanical Properties of Dissimilar AA1050-AA3105 Friction Stir Spot Welded Joints*
- Radiation Emission during SMAW Applications on SS304 and A36 Steels*
- Numerical and Experimental Determination of the Residual Stress State in Multipass Welded API 5L X70 Plates*
- Impact Toughness of Friction Stir Welded Al-Mg Alloy*
- Diffusion Welding of Thick Components Fabricated by Inserted Powder Injection Molding*
- An Investigation of TIG Welding of AZ31 Magnesium Alloy Sheets*
- Effects of Surface Finishing on the Mechanical Properties of Induction Welded Iron Based Sintered Compacts*
- Investigation of Mechanical Properties of MIG Brazed DP 600 Steel Joints Using Different Working Angles*
- Evaluation of HAZ Hardness in MMA Welding*
- Wear Behavior of Fe-C-Cr Based Hardfacing Alloys Dependent on Ferrovanadium and Ferrotungsten Addition*
- Mechanical Properties of Dissimilar and Similar Cold Metal Transfer Welded Galvanized Steel 1314 and Aluminum AA1050*
- The Effect Of Nugget Sizes On Mechanical Properties In Resistance Spot Welding Of SPA-C Atmospheric Corrosion Resistant Steel Sheets Used In Rail Vehicles*
- Microstructure and Mechanical Properties of AA 5083 and AA 6061 Welds Joined with AlSi5 and AlSi12 Wires*
- Torsional Behavior of AISI 420/AISI 4340 Steel Friction Welds
- Mechanical Properties of Pattern Welded 1075-15N20 Steels*
- Vorschau/Preview
- Vorschau