Startseite Technik Investigation of the Structural, Mechanical and Electrical Properties of Cu-Al-Zn Shape Memory Alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of the Structural, Mechanical and Electrical Properties of Cu-Al-Zn Shape Memory Alloys

  • Lidija Gomidželović , Emina Požega , Ana Kostov und Nikola Vuković
Veröffentlicht/Copyright: 28. September 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The results of an experimental investigation of structural, mechanical and electrical characteristics of different Cu-Al-Zn alloys are presented in this paper. The investigations were conducted using light optic microscopy, SEM-EDX analysis, hardness and electroconductivity measurements.

Kurzfassung

Die Ergebnisse einer experimentellen Untersuchung der mikrostrukturellen, mechanischen und elektrischen Eigenschaften verschiedener Cu-Al-Zn Legierungen werden in diesem Beitrag vorgestellt. Die Untersuchungen wurden mittels Lichtmikroskopie, REM-EDX-Untersuchungen sowie Härte- und Eletroleitfähigkeitsmessungen durchgeführt.


*Correspondence Address, Dr. Lidija Gomidželović, Mining and Metallurgy Institute, Zeleni bulevar 35, 19210 Bor, Serbia, E-mail:

Dr. Lidija Gomidželović, born 1974, is researcher at the Mining and Metallurgy Institute Bor (Serbia). Research areas are lead-free solder materials, thermodynamics of alloys, and characterization.

Emina Požega, born 1973, is research fellow at the Institute of Mining and Metallurgy Bor, Serbia and PhD student at Technical Faculty Bor, University of Belgrade, Serbia. Research areas are materials and chemical technologies.

Dr. Ana Kostov, born 1969, is scientific research fellow at the Mining and Metallurgy Institute Bor, Serbia and lecturer at University of Belgrade, Serbia, Technical Faculty Bor. Research areas are materials and chemical technologies, non-ferrous metallurgy, and chemical thermodynamics.

Nikola Vuković, born 1983, is an expert associate in the SEM-EDX laboratory, University of Belgrade, Faculty of Mining and Geology, Department for Mineralogy, Đušina 7, 11000 Belgrade, Serbia. Research area is microstructure of minerals and alloys.


References

1 A.Milosavljević, A.Kostov, R.Todorović: Smart materials: Shape Memory Alloys, Bakar36 (2011), No. 1, pp. 3944 (in Serbian)Suche in Google Scholar

2 L.Janke, C.Czaderski, M.Motavalli, J.Ruth: Applications of shape memory alloys in civil engineering structures – Overview, limits and new ideas, Mater. Struct.38 (2005), pp. 578592Suche in Google Scholar

3 Z. G.Wei, R.Sandström, S.Miyazaki: Shape-memory materials and hybrid composites for smart systems Part I, J. Mater. Sci.33 (1998), pp. 3743376210.1023/A:1004692329247Suche in Google Scholar

4 W. M.Huang, Z.Ding, C. C.Wang, J.Wei, Y.Zhao, H.Purnawali: Shape memory materials, Mater. Today13 (2010), No. 7-8, pp. 546110.1016/S1369-7021(10)70128-0Suche in Google Scholar

5 J. Li, W. Zhang, L.Gao, P.Gu, K.Sha, H.Wan: Methanol synthesis on Cu-Zn-Al and Cu-Zn-Al-Mn catalysts, Appl. Catal. A165 (1997), No. 1-2, pp. 41141710.1016/S0926-860X(97)00222-6Suche in Google Scholar

6 F.Huber, H.Meland, M.Rønning, H.Venvik, A.Holmen: Comparison of Cu-Ce-Zr and Cu-Zn-Al mixed oxide catalysts for water-gas shift, Top. Catal.45 (2007), No. 1-4, pp. 10110410.1007/s11244-007-0247-2Suche in Google Scholar

7 J. P.Breen, J. R. H.Ross: Methanol reforming for fuel-cell applications: Development of zirconia-containing Cu-Zn-Al catalysts, Catal. Today51 (1999), pp. 52153310.1016/S0920-5861(99)00038-3Suche in Google Scholar

8 N.Kang, H. S.Na, S. J.Kim, C. Y.Kang: Alloy design of Zn–Al–Cu solder for ultra-high temperatures, J. Alloys Compd.467 (2009), pp. 24625010.1016/j.jallcom.2007.12.048Suche in Google Scholar

9 E.Martinez-Flores, J.Negrete, G.Torres Villasenor: Structure and properties of Zn-Al-Cu alloy reinforced with alumina particles, Mater. Des.24 (2003), pp. 28128610.1016/S0261-3069(03)00028-1Suche in Google Scholar

10 A.Tolley, A.Condo: Application of the large angle convergent beam electron diffraction technique for the characterization of martensitic phases in Cu-Zn-Al alloys, Mater. Sci. Eng. A273-275 (1999), pp. 34735110.1016/S0921-5093(99)00295-6Suche in Google Scholar

11 M.Stipcich, R.Romero: The effect of post-quench aging on stabilization of martensite in Cu-Zn-Al and Cu-Zn-Al-Ti-B shape memory alloys, Mater. Sci. Eng. A273-275 (1999), pp. 58158510.1016/S0921-5093(99)00433-5Suche in Google Scholar

12 X. M.Zhang, M.Liu, J.Fernandez, J. M.Guilemany: Effect of small g-precipitates on the two-way shape memory effect in Cu-Zn-Al alloys, Mater. Des.21 (2000), pp. 55755910.1016/S0261-3069(00)00019-4Suche in Google Scholar

13 J. X.Zhang, Y. F.Zheng, Y. C.Luo, L. C.Zhao: Substructure and boundary structure of deformed 18R martensite in a Cu-Zn-Al alloy, Acta mater.47 (1999), No. 12, pp. 3497350610.1016/S1359-6454(99)00185-8Suche in Google Scholar

14 H.Xu, S.Tan: Calorimetric investigation of a Cu-Zn-Al alloy with two way shape memory, Scr. Metall. Mater.33 (1995), No. 5, pp. 74975410.1016/0956-716X(95)00269-2Suche in Google Scholar

15 J. L.Pelegrina, R.Romero: Calorimetry in Cu-Zn-Al alloys under different structural and microstructural conditions, Mater. Sci. Eng. A282 (2000), pp. 162210.1016/S0921-5093(99)00792-3Suche in Google Scholar

16 A.Cuniberti, R.Romero: Differential scanning calorimetry study of deformed Cu-Zn-Al martensite, Scr. Mater.51 (2004), pp. 31532010.1016/j.scriptamat.2004.04.024Suche in Google Scholar

17 S.Longauer, P.Makroczy, G.Janak, M.Longauerova: Shape memory effect in a Cu-Zn-Al alloy with dual phase α/β microstructure, Mater. Sci. Eng. A273-275 (1999), pp. 41541910.1016/S0921-5093(99)00309-3Suche in Google Scholar

18 J.Cederstrom, V.Kolomytsev, A.Kozlov, P.Titov, G.Zatulskii, S.Kondratjuk: Evolution of the shape memory parameters during multiple transformation cycles under load in Cu-Zn-Al alloys, Mater. Sci. Eng. A273-275 (1999), pp. 80480810.1016/S0921-5093(99)00420-7Suche in Google Scholar

19 J.Pons, M.Masse, R.Portier: Thermomecha­nical cycling and two-way memory effect induced in Cu-Zn-Al, Mater. Sci. Eng. A273-275 (1999), pp. 61061510.1016/S0921-5093(99)00439-6Suche in Google Scholar

20 E.Cingolani, M.Ahlers: On the origin of the two way shape memory effect in Cu-Zn-Al single crystals, Mater. Sci. Eng. A273-275 (1999) pp. 59559910.1016/S0921-5093(99)00436-0Suche in Google Scholar

21 H.Liang, Y. A.Chang: A Thermodynamic Description for the Al-Cu-Zn System, J. Phase Equilib.19 (1998), No. 1, pp. 253710.1007/s12385-006-5002-zSuche in Google Scholar

22 J.Sebkova, L.Kubicek: Thermodynamic Properties of a Liquid Zinc-Aluminum-Copper Alloy, Kovové Mater.23 (1985), No. 1, pp. 37Suche in Google Scholar

23 S.Sugino, H.Hagiwara: Activity of Zinc in Molten Copper and Copper-Gold Alloys, J. Jpn. Inst. Metals50 (1986), No. 2, pp. 1068107410.2320/jinstmet1952.50.12_1068Suche in Google Scholar

24 T. D.Van, L.Segers, R.Winand: Determination of Thermodynamic Properties of Ternary Al-Cu-Zn Alloys by Electromotive Force Method, J. Electrochem. Soc.14 (1994), No. 4, pp. 927933Suche in Google Scholar

25 J.Miettinen: Thermodynamic Description of the Cu-AI-Zn and Cu-Sn-Zn Systems in the Copper-Rich Corner, Calphad26 (2002), No. 1, pp. 11913910.1016/S0364-5916(02)00028-7Suche in Google Scholar

26 L.Gomidželović, I.Mihajlović, A.Kostov, D.Živković: Cu-Al-Zn System: Calculation of thermodynamic properties in liquid phase, Hem. Ind.67 (2013), No. 1, pp. 15716410.2298/HEMIND120306041GSuche in Google Scholar

27 L.Gomidželović, A.Kostov, D.aŽivković, E.Požega, V.Krstić: Cu-Al-Zn System: Thermodynamic analysis by RKM model, Bakar38 (2013), No. 1, pp. 110 (in Serbian)Suche in Google Scholar

28 H. J.Seifert, P.Liang, H. L.Lukas, F.Aldinger, S. G.Fries, M. G.Hamerlin, F.Faudot, T.Jantzen: Computational phase studies in commercial aluminium and magnesium alloys, Mater. Sci. Tech-Lond.,16 (2000), pp. 1429143310.1179/026708300101507406Suche in Google Scholar

29 M. M.Ahmed: Corrosion behaviour of Zn-Al-Cu alloy in HCl solution and its inhibition, Port. Electrochim. Acta24 (2006), pp. 12210.4152/pea.200601001Suche in Google Scholar

30 M.Flores, O.Blanco, S.Muhl, C.Pina, J.Heiras: Corrosion of a Zn-Al-Cu alloy coated with TiN/Ti films, Surface and Coatings Technology108-109 (1998), pp. 44945310.1016/S0257-8972(98)00639-2Suche in Google Scholar

31 T.Savaskan, M. S.Turhal: Relationships between cooling rate, copper content and mechanical properties of monotectoid based Zn-Al-Cu alloys, Mater. Charact.51 (2003), pp. 259270Suche in Google Scholar

32 S. R.Casolco, G.Dominguez, D.Sandoval, J. E.Garay: Processing and mechanical behaviour of Zn-Al-Cu porous alloys, Mater. Sci. Eng. A471 (2007), pp. 283310.1016/j.msea.2007.03.009Suche in Google Scholar

33 H.Pal, S. K.Pradhan, M.De: Microstructure and mechanical property of α-Al-Zn-Cu alloys aged at room temperature, Mater. Trans. JIM36 (1995), No. 4, pp. 49049510.2320/matertrans1989.36.490Suche in Google Scholar

34 www.factsage.cnSuche in Google Scholar

35 http://metals.about.com/od/properties/a/Electrical-Conductivity-In-Metals.htmSuche in Google Scholar

Published Online: 2014-09-28
Published in Print: 2014-06-01

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 5.2.2026 von https://www.degruyterbrill.com/document/doi/10.3139/120.110591/html
Button zum nach oben scrollen