Home Technology Microstructure and Compressive Properties of Open-Cell Silver Foams with Different Pore Architectures
Article
Licensed
Unlicensed Requires Authentication

Microstructure and Compressive Properties of Open-Cell Silver Foams with Different Pore Architectures

  • Seksak Asavavisithchai , Thanachache Preuksarattanawut and Ekasit Nisaratanaporn
Published/Copyright: September 28, 2014
Become an author with De Gruyter Brill

Abstract

Hollow silver particles with three different shapes, i. e., spherical, cylindrical, and octahedral, were used as raw material to produce open-cell silver foams. The shape difference of the particles resulted from the reduction of different shaped silver sulfates. Fabrication of silver foams was carried out using SDP process with disaccharide particles as space holder. The resultant silver foams show high porosity with distinctive pore microstructures. The examination of pore structure by SEM shows that there are three levels of porosities which are unique for each type of foam. The foams, using spherical and cylindrical silver particles, have a larger surface area and a higher density than the foam with the silver particle of octahedral shape. A control of pore architecture can be performed by tailoring material and process parameters. The difference in pore architecture resulted in a different compressive behaviour of the foams. As expected, the foam, using octahedral silver particles, has lower compressive strength than the others, mostly due to lower foam density.

Kurzfassung

Hohle Silberpartikel mit drei verschiedenen Formen, kugelig, zylindrisch und oktaedrisch, wurden als Rohmaterial verwendet, um offenporige Silberschäume herzustellen. Die Formunterschiede der Partikel ergab sich aus der Reduktion der verschieden geformten Silbersulfate. Die Herstellung der Silberschäume wurde unter Verwendung des SDP-Prozesses durchgeführt, wobei Disacharide als Platzhalter verwendet wurden. Die resultierenden Silberschäume zeigten eine hohe Porosität mit ausgeprägten Porenmikrostrukturen. Die Untersuchung der Porenstruktur mittels REM ergab drei Porositätsniveaus, die für jeden Schaumtyp einzigartig sind. Die Schäume, bei denen kugelige und zylindrische Partikel verwendet wurden, haben eine größere Oberfläche und eine höhere Dichte als der Schaum aus Silberpartikeln mit oktaedrischer Form. Eine Kontrolle der Porenstruktur kann mittels des Materialzuschnitts und den Prozessparametern durchgeführt werden. Die Unterschiede der Porenstrukturen ergaben ein unterschiedliches Kompressionsverhalten der Schäume. Wie zu erwarten, hatte der Schaum mit den oktaedrischen Silberpartikeln eine niedrigere Druckfestigkeit als die anderen, überwiegend aufgrund der niedrigeren Schaumdichte.


*Correspondence Address, Assistant Prof. Dr. Seksak Asavavisithchai, Innovative Metals Research Unit, Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand, E-mail:

Associate Professor Dr. Seksak Asavavisithchai works in the Innovative Metals Research Unit, Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand. He received his PhD from the University of Nottingham, UK in the field of materials design and engineering. His research interests are metallic foams, powder metallurgy, metal-matrix composite (MMC), and failure analysis.

Thanachache Preuksarattanawut, postgraduate student, was working in the Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.

Assistant Professor Dr. Ekasit Nisaratanaporn works in the Innovative Metals Research Unit Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand. He received his PhD in Materials Science from Imperial College, UK. His research interests are precious metals, casting and solidification, and chemical route synthesis.


References

1 J.Banhart: Manufacture, Characterization and Application of Cellular Metals and Metal Foams, Progress in Materials Science46(2001), pp. 559632 DOI: http://dx.doi.org/10.1016/S0079-6425(00)00002-5Search in Google Scholar

2 Y.Conde, J.F. Despois, R.Goodall, A.Marmottant, L.Salvo, C.S. Marchi, A.Mortensen: Replication processing of highly porous materials, Advanced Engineering Materials8 (2006), pp. 795803 DOI: http://dx.doi.org/10.1002/adem.200600077Search in Google Scholar

3 Y.Y. Zhao, D.X. Sun: A novel sintering-dissolution process for manufacturing Al foams, Scripta Materialia44 (2001), pp. 105110 DOI: http://dx.doi.org/10.1016/S1359-6462(00)00548-0Search in Google Scholar

4 B.Jiang, N.Q. Zhao, C.S. Shi, J.J. Li: Processing of open-cell aluminum foams with tailored porous morphology, Scripta Materialia53(2005), pp. 781785 DOI: http://dx.doi.org/10.1016/j.scriptamat.2005.04.055Search in Google Scholar

5 S.Asavavisithchai, E.Nisaratanaporn: Fabrication of open-cell silver foams using disaccharide as space holders, Chiang Mai Journal of Science37 (2010), pp. 222230Search in Google Scholar

6 T.Preuksarattanawut, S.Asavavisithchai, E.Nisaratanaporn: Fabrication of silver hollow microspheres by sodium hydroxide in glycerol solution, Materials Chemistry and Physics130(2011), pp. 481486 DOI: http://dx.doi.org/10.1016/j.matchemphys.2011.07.013Search in Google Scholar

7 H.F. Cheng, F.S. Han: Compressive behaviour and energy absorbing characteristic of opencell aluminum foam filled with silicate rubber, Scripta Materialia49 (2003), pp. 583586 DOI: http://dx.doi.org/10.1016/S1359-6462(03)00332-4Search in Google Scholar

8 B.Jiang, Z.Wang, N.Zhao: Effect of pore size and relative density on the mechanical properties of open-cell aluminum foams, Scripta Materialia56 (2007), pp. 169172 DOI: http://dx.doi.org/10.1016/j.scriptamat.2006.08.070Search in Google Scholar

9 L.J. Gibson, M.F. Ashby: Cellular Solids, Structure and Properties, 2nd Edition, Cambridge University Press, Cambridge, UK (1997)10.1017/CBO9781139878326Search in Google Scholar

Published Online: 2014-09-28
Published in Print: 2014-06-01

© 2014, Carl Hanser Verlag, München

Downloaded on 5.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/120.110583/html
Scroll to top button