Startseite Acrylonitrile-Vinylidene Chloride Copolymer Film with Activated Carbon and MnO2 for Formaldehyde Degradation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Acrylonitrile-Vinylidene Chloride Copolymer Film with Activated Carbon and MnO2 for Formaldehyde Degradation

  • Shao Wei , Zhang Hua , Gao Kai , Wan Dong und Zhang Xingxiang
Veröffentlicht/Copyright: 1. Oktober 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Acrylonitrile-vinylidene chloride (AN-VDC) copolymer films containing activated carbon, manganese dioxide nanoparticles were fabricated via casting method. The formaldehyde degradation capacity of copolymer film was investigated. The results showed that formaldehyde eliminating rate was obviously improved when copolymer film was blended with MnO2 or activated carbon, respectively. The HCHO removal rate increased with concentration of MnO2 or activated carbon. HCHO degradation rate of AN-VDC copolymer film without addition was 45 % for 48 h, while it was up to 90–95 % with the treatment time of 36 h after 3 wt.-% MnO2 or activated carbon addition. Furthermore, the complex effect of MnO2 and activated carbon on the degradation has also been studied. When 3 wt.-% MnO2 and 1 wt.-% activated carbon was mixed into copolymer, the HCHO removal rate was about 90 % for 36 h treatment. The results demonstrated that the formaldehyde eliminating rate was enhanced by complex addition of both MnO2 and activated carbon compared to films with single additions. The enhancement of HCHO eliminating efficiency occured due to a double effect of physical absorption of activated carbon and catalytic oxidation of MnO2.

Kurzfassung

Acrylnitril-Vinylidenchlorid Copolymer-Schichten (AN-VDC), die Aktivkohle und Mangandioxid-Nanopartikel enthalten, wurden mittels Gießprozess hergestellt. Die Kapazität dieser Copolymerfilme Formaldehyd abzubauen wurde untersucht. Die Ergebnisse zeigen, dass die Formaldehyd-(HCHO)-Eliminierungsrate offensichtlich verbessert ist, wenn der Copolymer-Film mit MnO2 bzw. mit Aktivkohle gemischt wird. Die HCHO-Beseitigungsrate nahm mit der Konzentration von MnO2 oder Aktivkohle zu. Die HCHO-Abbaurate des AN-VDC-Copolymer-Films ohne Zusätze war 45 % über 48 h, während es bis zu 90–95 % bei einer Behandlungszeit von 36 h nach Zugabe von 3 wt.-% MnO2 oder Aktivkohle betrug. Darüber hinaus wurde der komplexe Abbau-Effekt von MnO2 und Aktivkohle untersucht. Bei einem Zusatz von 3 wt.-% MnO2 und 1 wt.-% Aktivkohle im Coploymer, betrug die HCHO-Abbaurate 90 % bei einer Behandlungsdauer von 36 h. Die Ergebnisse zeigten, dass die Formaldehyd-Abbaurate durch die komplexe Zugabe von sowohl MnO2 als auch Aktivkohle im Vergleich zu Filmen mit einzelnem Zusatz beschleunigt werden kann. Die Erhöhung der HCHO-Eliminierungseffizienz im doppelten Effekt der physikalischen Absorption von Aktivkohle und der katalytischen Oxidation von MnO2 begründet.


Shao Wei was born in 1979. He received his MSc degree from Nankai University, China. He is a candidate for PhD degree from Tianjin Polytechnic University, China, now. His current research focuses on the functional adsorption fiber. He worked in Tianjin Municipal Key Lab of Fiber Modification and Functional Fiber, Institute of Functional Fibers, Tianjin Polytechnic University, China. The address is: No. 399, Binshui West Road, Xiqing district, Tianjin 300387, China.

Zhang Hua was born in 1961. She received BS, MSc and PhD degrees from Tianjin Polytechnic University, China in 1984, 1990, and 2007, respectively. She is professor and her interests are functional polymer materials, function fibers etc‥ She worked in Tianjin Municipal Key Lab of Fiber Modification and Functional Fiber, Institute of Functional Fibers, Tianjin Polytechnic University, China. The address is: No. 399, Binshui West Road, Xiqing district, Tianjin 300387, China.

Gao Kai was born in 1988. He received BS and MSc degrees from Tianjin Polytechnic University, China in 2010 and 2013, respectively. The study of adsorption of function fibers is his research. The address is: No. 399, Binshui West Road, Xiqing district, Tianjin 300387, China.

Wan Dong was born in 1989. He received BS degrees from Tianjin Polytechnic University in 2011. His research is about the study function organic fibers. The address is: No.399, Binshui West Road, Xiqing district, Tianjin 300387, China.

Zhang Xingxiang was born in 1962. He received his BS degree from Nankai University in 1984, MSc degree from Tianjin Polytechnic University, China in 1987. He obtained his PhD degree from The Hong Kong Polytechnic University in 2005. He is professor and his interests are polymer with high properties, function fibers, phase change material, etc‥ He worked in Tianjin Municipal Key Lab of Fiber Modification and Functional Fiber, Institute of Functional Fibers, Tianjin Polytechnic University, China. The address is: No. 399, Binshui West Road, Xiqing district, Tianjin 300387, China.


References

1 P.Wu, J. Z.Liu: Indoor air formaldehyde pollution harm and control measures, Pub. Heal. Pre. Med.17 (2006), pp. 5960Suche in Google Scholar

2 X.Yang, Y. P.Zhang, D.Chen, W. G.Chen, R.Wang: Eye irritation caused by formaldehyde as an indoor air pollution – A controlled human exposure experiment, Biomed. Environ. Sci.14 (2001), pp. 229236Suche in Google Scholar

3 P.Pichat, J.Disdier, C.Hoang-Van, D.Mas, G.Goutailler, C.Gaysee: Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis, Catal. Today63 (2000), pp. 36336910.1016/S0920-5861(00)00480-6Suche in Google Scholar

4 Z. Q.Wang, J. J.Pei, J. S.Zhang: Modeling and simulation of an activated carbon-based botanical air filtration system for improving indoor air quality, Build. Environ.54 (2012), pp. 10911510.1016/j.buildenv.2012.02.011Suche in Google Scholar

5 H. R.Guo, G. M.Wang, S. Y.Ma, B.Li: Synthesis, structure and adsorption properties of bagasse-based carbon molecular sieves, New Carbon Mater.27 (2012), pp. 205210Suche in Google Scholar

6 M. F.Fellah, I.Onal: DFT study of direct methanol oxidation to formaldehyde by N2O on the Fe2+-ZSM-5 zeolite cluster, J. Phys. Chem. C116 (2012), pp. 136161362210.1021/jp302340gSuche in Google Scholar

7 A.Aydogan, L. D.Montoya: Formaldehyde removal by common indoor plant species and various growing media, Atmos. Environ.45 (2011), pp. 2675268210.1016/j.atmosenv.2011.02.062Suche in Google Scholar

8 A. M.Ewlad-Ahmed, M. A.Morris, S. V.Patwardhan, L. T.Gibson: Removal of formaldehyde from air using functionalized silica supports, Environ. Sci. Technol.46 (2012), pp. 133541336010.1021/es303886qSuche in Google Scholar PubMed

9 C. H.Ao, S. C.Lee, J. Z.Yu, J. H.Xu: Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs, Appl. Catal. B-Environ.54 (2004), pp. 415010.1016/j.apcatb.2004.06.004Suche in Google Scholar

10 Y.Sekine, M.Fukuda, Y.Takao, T.Ozana, H.Sakuramoto, K. W.Wang: Simultaneous removal of formaldehyde and benzene in indoor air with a combination of sorption- and decomposition-typed air filters, Environ. Technol.33 (2011), pp. 1983198910.1080/09593330.2011.562924Suche in Google Scholar PubMed

11 G. Q.Wu, J. W.Zhang, X. Y.Wang, J. J.Liao, H.Xia, S. A.Akbar, J. H.Li, S. W.Lin, X. G.Li, J.Wang: Hierarchical structured TiO2 nano-tubes for formaldehyde sensing, Ceram. Int.38 (2012), pp. 6341634710.1016/j.ceramint.2012.05.004Suche in Google Scholar

12 I.Castro-Hurtado, J.Herran, G. G.Mandayo, E.Castano: SnO2-nanowires grown by catalytic oxidation of tin sputtered thin films for formaldehyde detection, Thin Solid Films520 (2012), pp. 4792479610.1016/j.tsf.2011.10.140Suche in Google Scholar

13 N. H.An, Q. S.Yu, G.Liu, S. Y.Li, M. J.Jia, W. X.Zhang: Complete oxidation of formaldehyde at ambient temperature over supported Pt/FeO3 catalysts prepared by colloid-deposition method, J. Hazard Mater.186 (2011), pp. 1392139710.1016/j.jhazmat.2010.12.018Suche in Google Scholar PubMed

14 X. H.Yu, J. H.He, D. H.Wang, Y. C.Hu, H.Tian, Z. C.He: Facile controlled synthesis of Pt/MnO2 nanostructured catalysts and their catalytic performance for oxidative decomposition of formaldehyde, J. Phys. Chem. C116 (2012), pp. 85186010.1021/jp208947eSuche in Google Scholar

Published Online: 2014-10-01
Published in Print: 2014-01-02

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110526/html?lang=de
Button zum nach oben scrollen