Home Influence of Surface Roughness of Alumina Ceramics on Indentation Size
Article
Licensed
Unlicensed Requires Authentication

Influence of Surface Roughness of Alumina Ceramics on Indentation Size

  • Marijana Majić Renjo , Lidija Ćurković and Danko Ćorić
Published/Copyright: October 1, 2014
Become an author with De Gruyter Brill

Abstract

Alumina (Al2O3) is one of the most important technical ceramic materials due to its good properties and its acceptable price. For some purposes, it is important to achieve either a very smooth or a rough surface of the ceramic object. The aim of this study was to evaluate the influence of different surface finish processes on the surface roughness of alumina and, consequently, on the measured Knoop hardness. Four types of samples were prepared, each with a different surface finish – ground with different SiC abrasive papers or polished with diamond pastes with different granulation. For each sample three indentation loads were used: 0.4903 N (HK 0.05), 4.903 N (HK 0.5) and 49.03 N (HK 5). It has been noticed that all samples exhibited a decrease in hardness with the increasing applied test load, a phenomenon known as the normal indentation size effect (ISE). In order to investigate this occurrence, three mathematical models were applied, i. e., Meyer's law, the proportional specimen resistance model (PSR) and modified proportional specimen resistance model (MPSR). The results showed that the alumina surface roughness significantly affects the measured Knoop hardness. Dependence of Knoop hardness and the indentation load can be quantified by all three mathematical models.

Kurzfassung

Aluminiumoxid (Al2O3) ist infolge seiner guten Eigenschaften und seines akzeptablen Preises eine der bedeutendsten technischen Keramiken. Für verschiedene Anwendungen ist es entweder erforderlich, eine sehr glatte oder aber eine raue Oberfläche zu erzielen. Das Ziel der diesem Beitrag zugrunde liegenden Studie war es, den Einfluss von verschiedenen Oberflächenendbearbeitungsprozessen auf die Oberflächenrauheit von Aluminiumoxid und schließlich auf die Knoop-Härte zu bestimmen. Hierzu wurden vier Probenarten vorbereitet, jede mit unterschiedlicher Oberflächenendbearbeitung – jeweils geschliffen mit verschiedenen SiC Schleifpapieren oder poliert mit Diamantpasten verschiedener Körnung. Auf jeder Probe wurden drei Eindruckslasten angewendet: 0,4903 N (HK 0,05), 4,903 N (HK 0,5) und 49,03 N (HK 5). Es wurde festgestellt, dass alle Proben einen Härteabfall mit zunehmender Prüflast aufwiesen, ein Phänomen, das als Normal Identation Size Effekt (ISE) bekannt ist. Um diese Erscheinung zu untersuchen, wurden drei mathematische Modelle angewendet, und zwar das Meyer'sche Gesetz, das proportionale Probenwiderstandsmodell (Proportional Specimen Resistance Model (PSR)) und das modifizierte Probenwiderstandsmodell (Modified Proportional Specimen Resistance Model (MPSR)). Die Ergebnisse zeigen, dass die Oberflächenrauheit des Aluminiumoxids die gemessene Knoop-Härte signifikant beeinflusst. Die Abhängigkeit zwischen der Knoop-Härte und der Eindruckslast kann mit allen drei mathematischen Modellen quantifiziert werden.


Marijana Majić Renjo, born 1985, achieved her master degree in Mechanical Engineering at the faculty of mechanical engineering and naval architecture, University of Zagreb, Croatia. She is employed as research assistant / scientific novice at the same institution, in the department of materials. She is a postgraduate student of materials science and engineering at the faculty of mechanical engineering and naval architecture.

Lidija Ćurković, born 1966, graduated at the faculty of chemical engineering and technology, University of Zagreb, Croatia in 1990. After graduating she worked in the department of analytical chemistry of the faculty of chemical engineering and technology, University of Zagreb, Croatia. In 1995 she acquired the master degree and the doctor degree in 1999 at the faculty of chemical engineering and technology in Zagreb, Croatia. Since 2000 she has been working in the department of materials of the faculty of mechanical engineering and naval architecture, University of Zagreb, Croatia. She is now professor and head of laboratory for chemical analysis of metals at faculty of mechanical engineering and naval architecture, University of Zagreb, Croatia. The scientific work includes research in the field of material science and engineering, particularly ceramics and ceramics coating.

Danko Ćorić, born 1966, graduated at the faculty of mechanical engineering and naval architecture, University of Zagreb, Croatia in 1992. Since 1992 he has been working in the department of materials of the faculty of mechanical engineering and naval architecture. In 1996 he achieved the master degree and the doctor degree in 2001. He is now associate professor at faculty of mechanical engineering and naval architecture, University of Zagreb, Croatia. His scientific work includes research in the field of material science and engineering, especially in the area of mechanical properties of materials, lightweight materials in aerospace and shape memory alloys.


References

1 H.Fahner: Breviary Technical Ceramics, Verband der Keramischen Industrie e.V. (2004)Search in Google Scholar

2 H.Li, A.Ghosh, Y. H.Han, R. C.Bradt: The frictional component of the indentation size effect in low load microhardness testing, J. Mater. Res.8 (1993), pp. 1028103210.1557/JMR.1993.1028Search in Google Scholar

3 J.Gong, Z.Guan: Load dependence of low-load Knoop hardness in ceramics: A modified PRS model, Mater. Lett.47 (2001), pp. 14014410.1016/S0167-577X(00)00225-1Search in Google Scholar

4 X. J.Ren, R. M.Hooper, C.Griffiths, J. L.Henshall: Indentation size effect in ceramics: Correlation with H/E, J. Mater. Sci. Let.22 (2003), pp. 1105110610.1023/A:1024947210604Search in Google Scholar

5 H.Li, R. C.Bradt: The microhardness indentation load/size effect in rutile and cassiterite single crystals, J. Mater. Sci.28 (1993), pp. 91792610.1007/BF00400874Search in Google Scholar

6 H.Kim, T.Kim: Measurement of hardness on traditional ceramics, J. Eur. Ceram. Soc.22 (2002), pp. 1437144510.1016/S0955-2219(01)00457-5Search in Google Scholar

7 J.Gong, J.Wu, Z.Guan: Examination of the indentation size effect in low-load Vickers hardness testing of ceramics, J. Eur. Ceram. Soc.19 (1999), pp. 2625263110.1016/S0955-2219(99)00043-6Search in Google Scholar

8 U.Kölemen, Analysis of ISE in microhardness measurements of bulk MgB2 superconductors using different models, J. Alloys Compd.425 (2006), pp. 42943510.1016/j.jallcom.2006.01.075Search in Google Scholar

9 O.Sahin, O.Uzun, U.Kolemen, N.Ucar: Vickers microindentation hardness studies of β-Sn single crystal, Mater. Characterization, 58 (2007), pp. 19720410.1016/j.matchar.2006.04.023Search in Google Scholar

10 J.Gong, Z.Zhao, Z.Guan, H.Miao: Load-dependence of Knoop hardness of Al2O3-TiC composites, J. Eur. Ceram. Soc.20 (2000), No. 12, pp. 189590010.1016/S0955-2219(02)00398-9Search in Google Scholar

11 S.Sebastian, M. A.Khadar: Microhardness indentation size effect studies in 60B2O3-(40-x) PbO-xMCl2 and 50B2O3-(50-x)PbO-xMCl2 (M=Pb, Cd) glasses, J. Mater. Sci.40 (2205), pp. 16551659Search in Google Scholar

12 O.Sahin, O.Uzun, U.Kolemen, B.Düzgün, N.Uçar: Indentation size effect and microhardness study of β-Sn single crystals, Chin. Phys. Lett.22 (2005), pp. 3137314010.1088/0256-307X/22/12/043Search in Google Scholar

13 R. E.Chinn: Ceramography Preparation and Analysis of Cearmic Microstructures, ASM International, USA (2002)Search in Google Scholar

14 C.Hays, E. G.Kendall: An analysis of Knoop microhardness, Metall.6 (1973), pp. 27528210.1016/0026-0800(73)90053-0Search in Google Scholar

15 J.Gong, J.Wu, Z.Guan: Analysis of the indentation size effect on the apparent hardness for ceramics, Mater. Lett.38 (1999), pp. 19720110.1016/S0167-577X(98)00158-XSearch in Google Scholar

Published Online: 2014-10-01
Published in Print: 2014-01-02

© 2014, Carl Hanser Verlag, München

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/120.110520/html
Scroll to top button