Startseite Characterization of CuO/YSZ High Temperature Electrolysis Cathode Material Fabricated by High Energy Ball-Milling: 900 °C Reduced by Hydrogen Exposure*
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Characterization of CuO/YSZ High Temperature Electrolysis Cathode Material Fabricated by High Energy Ball-Milling: 900 °C Reduced by Hydrogen Exposure*

  • Sungkyu Lee , Hyun Seon Hong , Mi-Jai Lee und Sang-Kuk Woo
Veröffentlicht/Copyright: 1. Oktober 2014
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

As a more economical cathode material than conventional Ni/YSZ cermet for high temperature electrolysis (HTE) cell, CuO/YSZ composites (40 vol.-% and 60 vol.-% CuO powder with balance YSZ) were successfully fabricated by high energy ball-milling of CuO and YSZ powders, pressing into pellets (Φ 13 mm × 2 mm) and subjecting them to a subsequent reduction-sintering process at 900 °C under purging with a 5 % H2/Ar gas. The Cu/YSZ cermet material thus fabricated was characterized using various analytical methods such as XRD, SEM, and laser diffraction as well as scattering method. Electrical conductivity of reduction-sintered Cu/YSZ cermet pellets thus fabricated was measured both at room temperature and temperature range between 600 °C and 800 °C by using the 4-probe technique for comparison with those of previously published literature conductivity data of Ni/YSZ and Cu/YSZ cermets produced by the same high-energy ball milling of blended elemental metal with YSZ powders. The effect of composite composition on the electrical conductivity was investigated and a slight decrease in electrical conductivity for CuO content of 60 vol.-% was explained by a greater porosity accompanying reduction-sintering of 60 vol.-% CuO/YSZ composite than that with 40 vol.-%. Lastly, CuO/YSZ was used as a HTE cathode of a self-supporting planar unit cell and its electrochemical performance was investigated.

Kurzfassung

Als ein kostengünstiges Kathodenmaterial im Vergleich zu konventionellem Ni/YSZ- Cermet für die Hochtemperaturelektrolyse-Zelle (HTE) wurden CuO/YSZ-Komposite (40 vol.-% bzw. 60 vol.-% CuO-Pulver, Rest YSZ) erfolgreich mittels des Hochenergie-Kuglelmahlprozesses von CuO- und YSZ-Pulvern hergestellt. Diese werden in Pellets (Φ 13 mm × 2 mm) gepresst und nachfolgend einem Reduktionssinterprozess bei 900 °C unter 5 % H2/Ar-Gasspülung unterzogen. Das so hergestellte Cu/YSZ-Cermet-Material wurde mittels verschiedener analytischer Methoden, wie XRD, SEM sowie Laserdiffraktometrie und –streuung charakterisiert. Die elektrische Leitfähigkeit der so hergestellten reduktionsgesinterten Cu/YSZ-Cermetpellets wurde sowohl bei Raumtemperatur als auch im Temperaturbereich zwischen 600 °C und 800 °C gemessen, wobei die Vierprobentechnik angewendet wurde, um einen Vergleich zu bisher veröffentlichten Leitfähigkeitsdaten von Ni/YSZ- und Cu/YSZ-Cermets aus der Literatur zu ermöglichen, die mittels desselben Hochenergie-Kugelmahlprozesses von gemischten elementaren Metallen und YSZ-Pulvern hergestellt wurden. Die Auswirkungen der Komposit-Zusammensetzung auf die elektrische Leitfähigkeit wurde untersucht und eine leichte Abnahme in der elektrischen Leitfähigkeit für einen CuO-Gehalt von 60 vol.-% mit einer größeren Porösität erklärt, die das Reduktionssintern von 60 vol.-% CuO/YSZ stärker begleitet als beim 40 vol.-% Material. Schließlich wurde das CuO/YS-Material als eine HTE-Kathode einer selbstunterstützenden, planaren Einheitszelle verwendet und ihre elektrochemische Performanz untersucht.


Sungkyu Lee, born 1959, received his BSc at the Hanyang University of Seoul, Korea, in 1982. He graduated as MS and PhD in Materials Science and Engineering at the University of Minnesota at Twin Cities, U.S.A., in 1991 and 1994, respectively. Now he is working as principal engineer at the Advanced Materials and Processing Center, Institute for Advanced Engineering, Yongin-si, Gyeonggi-do, Korea.

Hyun Seon Hong, born 1968, received his BSc, MS, and PhD in Materials Engineering at the Hanyang University of Seoul, Korea, in 1991, 1994, and 1998, respectively. Now he is working as center leader of the Advanced Materials and Processing Center, Institute for Advanced Engineering, Yongin-si, Gyeonggi-do, Korea.

Mi-Jai Lee, born 1967, received her BSc and MS in Ceramic Engineering at Myongji University, Korea, in 1989 and 1991, respectively. Her PhD was conferred in Materials Science and Engineering at the Myongji University, Korea, in 2009. Now she is working as principal researcher of the Optic & Electronic Ceramics Division, Electronic & Optic Materials Center, Korea Institute of Ceramic Engineering & Technology, Gasan-dong, Geumcheon-gu, Seoul, Korea.

Sang-Kuk Woo, born 1954, received his BSc in Ceramic Engineering at Yonsei University, Seoul, Korea, in 1978. His MS and PhD degrees were coferred in Materials Science and Engineering and Inorganic Materials Engineering, respectively, at the Korea Advanced Institute of Science and Technology, Yuseong-gu, Korea, in 1987 and 1994, respectively. Now he is working as principal researcher of the Convergence Energy Materials Re0search Center, Korea Institute of Energy Research, Yuseog-gu, Daejeon, Korea.

* Work leading to this manuscript was performed at Institute for Advanced Engineering (IAE) and all legal claims for the research belong to the IAE.


References

1 J.Udagawa, P.Aguiar, N. P.Brandon: Hydrogen production through steam electrolysis: Model-based steady state performance of a cathode-supported intermediate temperature solid oxide electrolysis cell, Journal of Power Sources166 (2007), No. 1, pp. 12713610.1016/j.jpowsour.2006.12.081Suche in Google Scholar

2 N.Meng, K. H. LeungMichael, Y. C.Dennis: Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production, Electrochimica Acta52 (2007), No. 24, pp. 6707671810.1016/j.electacta.2007.04.084Suche in Google Scholar

3 S.Lee, K.-H.Kang, J.-M.Kim, H. S.Hong, Y.Yun, S.-K.Woo: Fabrication and characterization of Cu/YSZ cermet high temperature electrolysis cathode material prepared by high energy ball-milling method I: 900 °C sintered, Journal of Alloys and Compounds448 (2008), pp. 36336710.1016/j.jallcom.2007.08.022Suche in Google Scholar

4 S.Lee, J.-M.Kim, H. S.Hong, S.-K.Woo: Fabrication and characterization of Cu/YSZ cermet high temperature electrolysis cathode material prepared by high energy ball-milling method I: 700 °C sintered, Journal of Alloys and Compounds467 (2009), pp. 61462110.1016/j.jallcom.2008.07.111Suche in Google Scholar

5 A.Ringuedé, D. P.Fagg, J.-R.Frade: Electrochemical behaviour and degradation of (Ni, M)/YSZ cermet electrodes (M = Co, Cu, Fe) for high temperature applications of solid electrolytes, Journal of the European Ceramic Society24 (2004), No. 6, pp. 1355135810.1016/S0955-2219(03)00564-8Suche in Google Scholar

6 A.Ringuedé, J. A.Labrincha, J. R.Frade: A combustion synthesis method to obtain alternative cermet materials for SOFC anodes, Solid State Ionics141–142 (2001), pp. 549557Suche in Google Scholar

7 J. S.Herring, J. E.O'Brien, C. M.Stoots, G. L.Hawkes, J. J.Hartvigsen, M.Shahnam: Progress in high temperature electrolysis for hydrogen production using planar SOFC technology, International Journal of Hydrogen Energy32 (2007), No. 4, pp. 44045010.1016/j.ijhydene.2006.06.061Suche in Google Scholar

8 Y.Shin, W.Park, J.Chang, J.Park: Evaluation of the high temperature electrolysis of steam to produce hydrogen, International Journal of Hydrogen Energy32 (2007), No. 10–11, pp. 1486149110.1016/j.ijhydene.2006.10.028Suche in Google Scholar

9 J. C.Ruiz-Morales, J.Canales-Vázquez, D.Marrero-López, J. T. S.Irvine, P.Núñez: Improvement of the electrochemical properties of novel solid oxide fuel cell anodes La0.75Sr0.25Cr0.5Mn0.5O3−δ and La4Sr8Ti11Mn0.5Ga0.5O37.5−δ, using Cu–YSZ-based cermets, Electrochimica Acta52 (2007), No. 25, pp. 7217722510.1016/j.electacta.2007.05.060Suche in Google Scholar

10 S.Lee, K.-H.Kang, H. S.Hong, Y.Yun, S.-K.Woo: Performance of Ni/YSZ cermet cathode prepared by mechanical alloying for high temperature electrolysis of water vapor (steam): Effect of anode and cathode thicknesses on the efficiency of hydrogen production, International Journal of Materials Research99 (2008), pp. 11411910.3139/146.101613Suche in Google Scholar

11 S.Lee, K.-H.Kang, J.-M.Kim, H. S.Hong, Y.Yun, S.-K.Woo: Performance of Ni/Y2O3-Stabilized ZrO2 Cermet Cathode Prepared by Mechanical Alloying for High Temperature Electrolysis of Water Vapor, Japanese Journal of Applied Physics47 (2008), pp. 1838184410.1143/JJAP.47.1838Suche in Google Scholar

12 M. R.Somalu, V.Yufit, D.Cumming, E.Lorente, N. P.Brandon: Fabrication and characterization of Ni/ScSZ cermet anodes for IT-SOFCs, International Journal of Hydrogen Energy36 (2011), pp. 5557556610.1016/j.ijhydene.2011.01.151Suche in Google Scholar

13 C.Sun, U.Stimming: Recent anode advances in solid oxide fuel cell, Journal of Power Sources171 (2007), pp. 24726010.1016/j.jpowsour.2007.06.086Suche in Google Scholar

14 H. S.Hong, U.-S.Chae, S. T.Choo: The effect of ball milling parameters and Ni concentration on a YSZ-coated Ni composite for a high temperature electrolysis cathode, Journal of Alloys and Compounds449 (2008), pp. 33133410.1016/j.jallcom.2006.01.131Suche in Google Scholar

15 J. H.Yu, G. W.Park, S.Lee, S. K.Woo: Microstructural effects on the electrical and mechanical properties of Ni/YSZ cermet for SOFC anode, Journal of Power Sources163 (2007), pp. 92693210.1016/j.jpowsour.2006.10.017Suche in Google Scholar

16 T.Talebi, M. H.Sarrafi, M.Haji, B.Raissi, A.Maghsoudipour: Investigation on microstructures of NiO/YSZ composite and Ni-YSZ cermet for SOFCs, International Journal of Hydrogen Energy35 (2010), pp. 9440944710.1016/j.ijhydene.2010.04.156Suche in Google Scholar

17 R. J.Gorte, H.Kim, J. M.Vohs: Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon, Journal of Power Sources106 (2002), pp. 101510.1016/S0378-7753(01)01021-7Suche in Google Scholar

Published Online: 2014-10-01
Published in Print: 2014-01-02

© 2014, Carl Hanser Verlag, München

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110522/html
Button zum nach oben scrollen