Greenhouse Gas (GHG) Reduction Technologies and Applications in Automotive Industry
-
Mustafa Kemal Kulekci
Abstract
Greenhouse gas (GHG) emissions cause global warming and climate changing. This review summarizes the up-to-date applications that contribute to greater fuel economy and reduce CO2 emissions. A detailed explanation of the recent developments in the main concepts of fuel economy and CO2 reducing in automotive industry is given with a special relation to the materials to be selected. In the study, the past, present and future projection of fuel economy and CO2 emission is evaluated. The result of the study conclude that mass of the vehicle, kind of energy for engine, driving techniques and the technology level of the vehicles affect the fuel economy and CO2 emissions.
Kurzfassung
Die Treibhausgas-Emissionen verursachen globale Erwärmung und Klimawandel. Der vorliegende Beitrag fasst die heutigen Anwendungen zusammen, die zu einer größeren Kraftstoffwirtschaftlichkeit und zur Reduktion der CO2-Emissionen führen. Hierzu wird eine detaillierte Erklärung der neuesten Entwicklungen im Hinblick auf die Hauptkonzepte zur Kraftstoffwirtschaftlichkeit und Reduktion der CO2-Emissionen in der Automobilindustrie gegeben, hierbei wird ein besonderer Schwerpunkt auf die Werkstoffauswahl gelegt. In dieser Untersuchung wird die Vergangenheit, Gegenwart und Zukunft hinsichtlich Kraftstoffwirtschaftlichkeit und Reduktion der CO2-Emissionen bewertet. Als Ergebnis der Studie lässt sich schließen, dass die Masse der Fahrzeuge, die Energieart des Antriebs, die Fahrtechniken und das Technologieniveau der Fahrzeuge die Kraftstoffeinsparung und Reduktion der CO2-Emissionen beeinflussen.
References
1 Using Official Statistics to Calculate Greenhouse Gas Emissions, Eurostat a statistical guide, Luxembourg: Publications Office of the European Union, 2010, ISBN 978-92-79- 14487-5, doi:10.2785/3842Suche in Google Scholar
2 A.Bandivadekar, L.Cheah, C.Evans, T.Groode, J.Heywood, E.Kasseris, M.Kromer, M.Weiss: Reducing the fuel use and greenhouse gas emissions of the US vehicle fleet, Energy Policy36 (2008), pp. 2754–2760Suche in Google Scholar
3 http://www.ramboll.com/services/energy%20and%20climate/climateco2reduction, 17.02.2011, Climate – CO2 reduction, accessed 14.02.2011.Suche in Google Scholar
4 http://www.globalwarmingart.com/wiki/File:Global_Warming_Predictions_png, 15.02.2011, Global Warming, accessed 14.02.2011Suche in Google Scholar
5 J. T.Houghton, Y.Ding, D. J.Griggs, M.Noguer, P. J.van der Linden, X.Dai, K.Maskell, C. A.Johnson: Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University PressCambridge, UK (2001)Suche in Google Scholar
6 http://www.ipcc-data.org/, 16.02.201, Predicted climate models, accessed 14.02.2011Suche in Google Scholar
7 http://www.ccsr.u-tokyo.ac.jp/ehtml/etopindex.shtml, 17.02.2011, Center for Climate System Research, accessed 14.02.2011Suche in Google Scholar
8 http://www.nies.go.jp/index.html, 2010, CCSR/NIES AGCM + CCSR OGCM Models 1890–2100, National Institute for Environmental Studies, accessed 14.02.2011Suche in Google Scholar
9 G. M.Flato, G. J.Boer, W.Lee, N. A.McFarlane, D.Ramsden, M. C.Reader, A. J.Weaver: The Canadian Centre for Climate Modelling and Analysis global coupled model and its climate, Climate Dynamics16 (2000), No. 6, pp. 451–467Suche in Google Scholar
10 http://www.csiro.au/, 2011, CSIRO-Mk2 model 1961–2100, Commonwealth Scientific and Industrial Research Organisation, accessed 10.02.2011Suche in Google Scholar
11 http://www.metoffice.gov.uk/, 2011, HADCM3 model 1950–2099, Hadley Centre for Climate Prediction and Research, accessed 10.02.2011Suche in Google Scholar
12 http://www.gfdl.noaa.gov/, 2011, R30 Model 1961–2100, Geophysical Fluid Dynamics LaboratorySuche in Google Scholar
13 http://www.mpimet.mpg.de/en/home.html, accessed 14.02.2011Suche in Google Scholar
14 http://ncar.ucar.edu/, accessed 10.02.2011Suche in Google Scholar
15 http://www.dbcca.com/dbcca/EN/_media/InvestingInClimateChange2010.pdfSuche in Google Scholar
16 D.Lüthi: High-resolution carbon dioxide concentration record 650 000-800 000 years before present, Nature, pp. 379–382, (2008)Suche in Google Scholar
17 http://www.dbcca.com/dbcca/EN/Suche in Google Scholar
18 P. Kågeson: Reducing CO2 Emissions of New Cars – A Progress Report on the Car Industry's Voluntary Agreement and an Assessment of the Need for Policy Instruments, AT&E publication in association with Gröna Bilister (2005)Suche in Google Scholar
19 N. N.: CO2 Emissions of Fuel Combustion, 2010 Edition, International Energy Agency, www.iea.org/about/copyright.asp, 2010Suche in Google Scholar
20 N. N.: European Automobile Manufacturers Association: Reducing CO2 Emissions Of Cars Towards An Integrated Approach, http://www.internationaltransportforum.org/Topics/pdf/ACEA.pdf, 2011-March, accessed 14.03.2011Suche in Google Scholar
21 Reducing CO2 Emissions: Working Together to Achieve Better Results, http://www.acea.be/index.php/news/news_detail/reducing_co2_emissions_working_together_to_achieve_better_results/, accessed 14.02.2011Suche in Google Scholar
22 General Motor Corporation, The well-to-tank energy and emissions associated with refining and transporting gasoline are taken from the GM/ANL GREET study, GM/ANL 2005Suche in Google Scholar
23 M. A.Kromer, J. B.Heywood: Electric Powertrains: Opportunities and Challenges in the U.S. Light-Duty Vehicle Fleet, Massachusetts Institute of Technology, Publication No. LFEE 2007-03 RP, Cambridge (2007)Suche in Google Scholar
24 K.He, H.Huo, Q.Zhang, D.He, F.An, M.Wang, M. P.Walsh: Oil consumption and CO2 emissions in China's road transport: current status, future trends, and policy implications, Energy Policy33 (2005), pp. 1499–1507Suche in Google Scholar
25 N. P.Lutsey: Review Of Technical Literature And Trends Related To Automobile Mass- Reduction Technology, Reference Number: UCD-ITS-RR-10-10, May 2010, Research Report10.1016/S0958-2118(10)70195-6Suche in Google Scholar
26 N.Lutsey: Emerging technologies for efficient, low CO2 automobiles, International Congress on Transport SustenableIV, Mexico, 2010Suche in Google Scholar
27 A.Casadei, R.Broda: Impact of vehicle weight reduction on fuel economy for various vehicle architectures, Research report, 2008Suche in Google Scholar
28 N.Lutsey: Survey of Vehicle Mass Reduction Technology Trends and Prospects, Final Report, El Monte, California, USA (2010)Suche in Google Scholar
29 A.Stahl: 2011 Porsche Cayenne Breaks Cover in Germany, http://www.insideline.com/porsche/cayenne/2011/2011-porsche-cayennebreaks-cover-ingermany.html, accessed 14.02.2011Suche in Google Scholar
30 N. N.: Ward's Motor Vehicle Facts and Figures, Ward's Automotive, Detroit, MI, USA (2009)Suche in Google Scholar
31 N. N.: An Assessment of Mass Reduction Opportunities for a 2017–2020 Model Year Vehicle Program, Lotus Engineering Inc. (2010), California, 2010Suche in Google Scholar
32 D.Keith: HSS, AHSS and aluminum jockey for position in the race to cut auto curb weight, American Metal Market Monthly, (2010), FebruarySuche in Google Scholar
33 N. N.: Reducing CO2 Emissions from New Cars: A Study of Major Car Manufacturers' Progress in 2008, European Federation for Transport and Environment (2009)Suche in Google Scholar
34 W.Klanner: Proposal for CO2 Emission Target Lines for N1 Vehicles, FIA European Bureau, N1 Stakeholder Meeting on 9th March 2009 in the Conference Centre Borschette, BrusselsSuche in Google Scholar
35 Exceptional Energy – Q&A, June 2010, http://www.exceptionalenergy.com/Suche in Google Scholar
36 LP GAS: Healthy Energy for a changing world, World LP Gas Association, April 2009, http://www.worldlpgas.com/page_attachments/0000/1759/LP_Gas_Healthy_Energy_for_a_Changing_World.pdf, accessed 14.02.2011Suche in Google Scholar
37 N. N.: Towards Sustainable Production and Use of Resources: Assessing Biofuels, United Nations Environment Programme (2009-10-16, retrieved 2009-10-24)Suche in Google Scholar
38 Alternative Fuel Efficiencies in Miles per Gallon, www.eia.doe.govSuche in Google Scholar
39 http://www.cpast.org/Articles/fetch.adp?topicnum=61, accessed 14.02.2011Suche in Google Scholar
40 A.Demirbas: Political, economic and environmental impacts of biofuels: A review, Applied Energy86 (2009), pp. S108–S117doi:10.1016/j.apenergy.2009.04.036.editSuche in Google Scholar
41 MIT Study Predicts Well-to-Wheel Vehicle Emissions for 2030, http://gas2.org/2008/04/17/mit-study-predicts-well-to-wheel-vehicleemissions-for-2030, accessed 14.02.2011Suche in Google Scholar
42 http://en.wikipedia.org/wiki/Hybrid_electric_vehicle, accessed 14.02.2011Suche in Google Scholar
43 United Nation Environment Programme, Hybrid Electric Vehicles: And overview of current technology and its application in developing and transitional countries, UNEP, Kenya, September 2009Suche in Google Scholar
44 N. N.: Wind-to-Hydrogen Project, Hydrogen and Fuel Cells Research, Golden, CO: National Renewable Energy Laboratory, U.S. Department of Energy (2009 and 2010)Suche in Google Scholar
45 Electric car boom – Fiji Times Online. Fijitimes.com 2010-03-04. http://www.fijitimes.com/story.aspx?id=141347, retrieved 2010-06-26, accessed 29.02.2011Suche in Google Scholar
46 C.Gribben: Debunking the Myth of EVs and Smokestacks. http://www.electroauto.com/info/pollmyth.shtml, retrieved 15 October 2010, accessed 29.02.2011Suche in Google Scholar
47 S.Lee, H.Polly, G.Kenneth: The road from Copenhagen: Fuel prices and other factors affecting car use and CO2 emissions in industrialized countries, Proc. of the 12th WCTR, Lisbon, Portugal (2010)Suche in Google Scholar
48 US Federal Highway Administration, 2000, http://www.fhwa.dot.gov/201Suche in Google Scholar
49 F.Shokri, M.Y.Chu, R.H.Mokhtarian, R.A.Rahmat, A.Ismail: Best Route Based on Fuel Economy, European Journal of Scientific Research, ISSN 1450-216X, Vol. 32, No. 22009, pp. 177–186Suche in Google Scholar
50 Kågeson, P., Reducing CO2 Emissions from New Cars, A progress report on the car industry's voluntary agreement and an assessment of the need for policy instruments, A T&E publication in association with Gröna Bilister, 2005Suche in Google Scholar
51 http://www.fueleconomy.gov/feg/evtech.shtml, 2011, accessed 29.02.2011Suche in Google Scholar
© 2012, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Experimental Investigation of VHCF of Polymer Composites: Two Alternative Approaches*
- How to Deal with Very High Cycle Fatigue (VHCF) Effects in Practical Applications?*
- Piezoelectric Driven Testing Facilities to Research the Very High Cycle Fatigue Regime*
- Innovative Ultrasonic Testing Facility for Fatigue Experiments in the VHCF Regime*
- Fatigue Testing of Carbon Fibre-reinforced Polymers under VHCF Loading*
- Effect of Co Addition to Heat- Treated P/M 316L Stainless Steel on α′-Martensite Formation and Mechanical Properties
- Detection of Corrosion Processes and Fatigue Cracks by Means of Acoustic Emission Monitoring
- Use of Grey-Taguchi Method for the Optimization of Oblique Turning Process of AZ91D Magnesium Alloy
- Zur Wiederverwendung von Durchläufern im Treppenstufenversuch
- Microstructure and Microhardness Characterization of Cr3 C2 -SiC Coatings Produced by the Plasma Transferred Arc Method
- A New Approach to Iznik Tiles
- Greenhouse Gas (GHG) Reduction Technologies and Applications in Automotive Industry
- Vorschau/Preview
- Vorschau
- Kalender/Calendar
- Kalender
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Experimental Investigation of VHCF of Polymer Composites: Two Alternative Approaches*
- How to Deal with Very High Cycle Fatigue (VHCF) Effects in Practical Applications?*
- Piezoelectric Driven Testing Facilities to Research the Very High Cycle Fatigue Regime*
- Innovative Ultrasonic Testing Facility for Fatigue Experiments in the VHCF Regime*
- Fatigue Testing of Carbon Fibre-reinforced Polymers under VHCF Loading*
- Effect of Co Addition to Heat- Treated P/M 316L Stainless Steel on α′-Martensite Formation and Mechanical Properties
- Detection of Corrosion Processes and Fatigue Cracks by Means of Acoustic Emission Monitoring
- Use of Grey-Taguchi Method for the Optimization of Oblique Turning Process of AZ91D Magnesium Alloy
- Zur Wiederverwendung von Durchläufern im Treppenstufenversuch
- Microstructure and Microhardness Characterization of Cr3 C2 -SiC Coatings Produced by the Plasma Transferred Arc Method
- A New Approach to Iznik Tiles
- Greenhouse Gas (GHG) Reduction Technologies and Applications in Automotive Industry
- Vorschau/Preview
- Vorschau
- Kalender/Calendar
- Kalender