Effect of Co Addition to Heat- Treated P/M 316L Stainless Steel on α′-Martensite Formation and Mechanical Properties
-
Nantawan Pichaiwong
Abstract
The effect of various Co additions to P/M 316L stainless steel on α ’-martensite formation and mechanical properties (bending strength and hardness) were investigated. Powder mixtures were compacted using a single action press at 498 MPa and sintered at 1,300°C for 30 min under hydrogen atmosphere, followed by heat-treating in air at 800°C and 900°C for 25 h, 50 h, 75 h, and 100 h, respectively. It is found that oxide formation in closed pores at high temperatures can induce the α ’-martensite formation and reduce the area fraction of porosities, resulting in higher hardness of the heat-treated specimens than that of the sintered specimens. The Co additions can also reduce the amount of α ’-martensite. Long-term heating results in a slight decrease of bending strength due to high connected oxide formation in the internal pores.
Kurzfassung
Die Wirkung verschieden großer Co-Zugaben zum hochlegierten Stahl P/M 316L auf die α’-Martensitausbildung und auf die mechanischen Eigenschaften (Biegefestigkeit und Härte) wurden in der diesem Beitrag zugrunde liegenden Studie untersucht. Hierzu wurden Pulvermischungen in einem Einmaldruckverfahren bei 498 MPa kompaktiert und bei 1300°C für 30 min in Wasserstoffatmosphäre gesintert und anschließend bei 800°C und 900°C über 25 h, 50 h, 75 h und 100 h an Luft behandelt. Es wurde herausgefunden, dass die Oxidausbildung in geschlossenen Poren bei hohen Temperaturen eine α’-Martensitausbildung auslösen kann und den Flächenanteil der Porösität reduzieren kann, woraus sich eine höhere Härte der wärmebehandelten gegenüber den gesinterten Proben ergibt. Die Co-Zugaben können auch den Gehalt an α’-Martensit reduzieren. Das Langzeitglühen führt zu einer leicht reduzierten Biegefestigkeit infolge der Ausbildung von komplex verbundenen Oxidstrukturen in den inneren Poren.
References
1 H.Buscail, S.El Messki, F.Riffard, S.Perrier, R.Cueff, E.Caudron, C.Issartel: Characterization of the oxides formed at 1000 C on the AISI 316L stainless steel-role of molybdenum, Materials Chemistry and Physics111 (2008), pp. 491–496Suche in Google Scholar
2 Stainless Steel: Specialist Course, International Stainless Steel Forum (ISSF), Training notes 16, 1 st Edition (2002)Suche in Google Scholar
3 D.Peckner, I. M.Bernstein: Handbook of Stainless Steels, McGraw-Hill, New York (1997)Suche in Google Scholar
4 J. R.Davis: Stainless Steels, ASM Specialty Handbook, ASM International, Materials Park, OH (1994)Suche in Google Scholar
5 Metals Handbook, Powder Metallurgy, American Society for Metals, 9th Edition, Metals Park, OH (1984)Suche in Google Scholar
6 N.Kurgan, R.Varol: Mechanical properties of P/M 316L stainless steel materials, Powder Technology201 (2010), pp. 242–247Suche in Google Scholar
7 S. K.Ghosh, P.Mallick, P. P.Chattopadhyay: Effect of Cold Deformation on Phase Evolution and Mechanical Properties in an Austenitic Stainless Steel for Structural and Safety Applications, Journal of Iron and Steel Research International 19, Issue 4 (April 2012), pp. 63–6810.1016/S1006-706X(12)60089-2Suche in Google Scholar
8 P.Hedström, U.LienertJ.Almer, M.Oden: Stepwise transformation behaviour of the strain induced martensitic transformation in a metastable stainless steel, Scripta Materialia56 (2007), pp. 213–216Suche in Google Scholar
9 A.Kurc-Lisiecka, E.Kalinowska-Ozgowicz: Structure and mechanical properties of austenitic steel after cold rolling, Journal of Achievements in Materials and Manufacturing Engineering44 (2011), pp. 148–153Suche in Google Scholar
10 A.Kurc, Z.Stoklosa: The effect of γ-α— phase transformation on microstructure and properties of austenitic Cr-Ni steel, Journal of Achievements in Materials and Manufacturing Engineering41 (2010), pp. 85–94Suche in Google Scholar
11 J.Talonen, H.Hänninen: Formation of shear bands and strain induced martensite during plastic deformation of metastable austenitic stainless steels, Acta Materialia55 (2007), pp. 6108–6118Suche in Google Scholar
12 T.Shyr, J.Shie, S.Huang, S.Yang, W.Hwang: Phase transformation of 316L stainless steel from wire to fiber, Materials Chemistry and Physics122 (2010), pp. 273–277Suche in Google Scholar
13 S.Hong, S.Lee, T.Byun: Temperature effect on the low cycle fatigue behaviour of type 316L stainless steel: Cyclic non-stabilization and an invariable fatigue parameter, Materials Science and Engineering: A457 (2007), pp. 139–147Suche in Google Scholar
14 A.Bautista, F.Velasco, M.Campos, M. E.Rabanal, J. M.Torralba: Oxidation Behaviour at 900 C of Austenitic, Ferritic and Duplex Stainless Steels Manufactured By Powder Metallurgy, Oxidation of Metals59 (2002), pp. 373–39310.1023/A:1023000329514Suche in Google Scholar
15 F. B.Pickering: The Metallurgical Evolution of Stainless Steels, American Society for Metals/the Metals Society, OH (1979)Suche in Google Scholar
16 A.Buatista, C.Moral, F.Velasco, C.Simal, S.Guzman: Density improved powder metallurgical ferritic stainless steels for high-temperature applications, Journal of Material Processing Technology189 (2007), pp. 344–351Suche in Google Scholar
17 S.Dai, F.Shen, A.Yu: Granule Size Distribution and Porosity of Granule Packing, Journal of Iron and Steel Research International 15, Issue 5 (September 2008), pp. 1–510.1016/S1006-706X(08)60238-1Suche in Google Scholar
18 J.Ma, L. C.Lim: Effect of particle size distribution on sintering of agglomerate free submicron alumina powder compacts, Journal of European Ceramic Society22 (2002), pp. 2197–2208Suche in Google Scholar
© 2012, Carl Hanser Verlag, München
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Experimental Investigation of VHCF of Polymer Composites: Two Alternative Approaches*
- How to Deal with Very High Cycle Fatigue (VHCF) Effects in Practical Applications?*
- Piezoelectric Driven Testing Facilities to Research the Very High Cycle Fatigue Regime*
- Innovative Ultrasonic Testing Facility for Fatigue Experiments in the VHCF Regime*
- Fatigue Testing of Carbon Fibre-reinforced Polymers under VHCF Loading*
- Effect of Co Addition to Heat- Treated P/M 316L Stainless Steel on α′-Martensite Formation and Mechanical Properties
- Detection of Corrosion Processes and Fatigue Cracks by Means of Acoustic Emission Monitoring
- Use of Grey-Taguchi Method for the Optimization of Oblique Turning Process of AZ91D Magnesium Alloy
- Zur Wiederverwendung von Durchläufern im Treppenstufenversuch
- Microstructure and Microhardness Characterization of Cr3 C2 -SiC Coatings Produced by the Plasma Transferred Arc Method
- A New Approach to Iznik Tiles
- Greenhouse Gas (GHG) Reduction Technologies and Applications in Automotive Industry
- Vorschau/Preview
- Vorschau
- Kalender/Calendar
- Kalender
Artikel in diesem Heft
- Inhalt/Contents
- Inhalt
- Fachbeiträge/Technical Contributions
- Experimental Investigation of VHCF of Polymer Composites: Two Alternative Approaches*
- How to Deal with Very High Cycle Fatigue (VHCF) Effects in Practical Applications?*
- Piezoelectric Driven Testing Facilities to Research the Very High Cycle Fatigue Regime*
- Innovative Ultrasonic Testing Facility for Fatigue Experiments in the VHCF Regime*
- Fatigue Testing of Carbon Fibre-reinforced Polymers under VHCF Loading*
- Effect of Co Addition to Heat- Treated P/M 316L Stainless Steel on α′-Martensite Formation and Mechanical Properties
- Detection of Corrosion Processes and Fatigue Cracks by Means of Acoustic Emission Monitoring
- Use of Grey-Taguchi Method for the Optimization of Oblique Turning Process of AZ91D Magnesium Alloy
- Zur Wiederverwendung von Durchläufern im Treppenstufenversuch
- Microstructure and Microhardness Characterization of Cr3 C2 -SiC Coatings Produced by the Plasma Transferred Arc Method
- A New Approach to Iznik Tiles
- Greenhouse Gas (GHG) Reduction Technologies and Applications in Automotive Industry
- Vorschau/Preview
- Vorschau
- Kalender/Calendar
- Kalender