Startseite Piezoelectric Driven Testing Facilities to Research the Very High Cycle Fatigue Regime*
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Piezoelectric Driven Testing Facilities to Research the Very High Cycle Fatigue Regime*

  • Christian Fischer , Rainer Wagener , Andreas Friedmann , Christoph Axt , Michael Matthias , Tobias Melz und Heinz Kaufmann
Veröffentlicht/Copyright: 26. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Cyclic low amplitude loading and a huge number of cycles characterizes the Very High Cycle Fatigue (VHCF) regime. The challenge in research of the Very High Cycle Fatigue regime is to apply this large number of cycles to fracture in an acceptable time frame. For this reason, it is essential to use a machine, which is able to operate at high frequencies of cycles. Two testing machine concepts with piezo actuators are presented in this study. In the first concept, a high performance piezo stack actuator is presented, in which the specimen and the load cell are mechanically assembled in series. This set-up applies forces up to 10 kN and testing frequencies up to 1000 Hz. The second testing facility is a hybrid testing system, which consists of an inertial mass actuator and a servo hydraulic actuator connected in parallel. Both systems are capable of testing normal specimen dimensions and provide the possibility to work with variable as well as constant amplitude loading.

Kurzfassung

Die zyklische Beanspruchung mit niedrigen Amplituden und einer hohen Anzahl von Schwingspielen kennzeichnen den Very High Cycle Fatigue VHCF-Bereich der Betriebsfestigkeit. Die Herausforderung in der Untersuchung des VHCF-Bereiches besteht darin, diese hohen Schwingspielzahlen in einem sinnvollen Zeitrahmen im Labor abzubilden. Aus diesem Grund ist es unumgänglich, eine Prüfmaschine einzusetzen, die hohe Prüffrequenzen ermöglicht. Im vorliegenden Beitrag werden zwei Prüfmaschinenkonzepte mit Piezoaktuatoren vorgestellt. Im ersten Konzept wird ein Hochleistungspiezoaktuator verwendet. Die Probe und die Kraftmessdose sind dabei in einem geschlossen Kraftfluss angeordnet. Dieser Versuchsaufbau ermöglicht Kräfte bis zu 10 kN und Prüffrequenzen bis zu 1000 Hz. Die zweite Versuchseinrichtung besteht aus einem hybriden System, bei dem ein Inertialmassenaktuator mit einem Hydraulikaktuator kombiniert ist. Beide Systeme eignen sich zur Prüfung von (Standard-) Werkstoffproben und ermöglichen sowohl die Prüfung mit konstanten als auch mit variablen Amplituden.


*

Extended Version of the Contribution to VHCF 5

Dipl.-Ing. Christian Fischer, born in 1982, studied structural durability and welding techniques at Clausthal University of Technology, Germany, and graduated 2010. After graduating he joined the Institute of System Reliability and Machine Acoustics of the Technische Universität Darmstadt, Germany, and presently investigates the influence of testing frequency on cyclic material behaviour of aluminium alloys in the very high cycle fatigue regime as a part of the priority program 1466 “life infinity” of the German Research Foundation (DFG).

Dr.-Ing. Rainer Wagener, born 1975, studied General Mechanical Engineering at Clausthal University of Technology, Germany, where he presented his doctoral thesis on the cyclic material behaviour under constant and variable amplitude loading in 2007. He worked for one year with a German automotive supplier in component fatigue testing using road load data. In 2008 he joined the Fraunhofer LBF in Darmstadt, Germany, where he is the group manager of “Component-Related Material Behaviour” since 2012.

Dipl.-Ing. Andreas Friedmann, born in 1978, finished his studies at the Technische Universität Darmstadt, Germany, in 2004 with the diploma degree in mechanical engineering. Since then, he is working at Fraunhofer Institute for Structural Durability and System Reliability LBF, Darmstadt, Germany. From 2008 to 2012 he was team leader of the experimental analysis and simulation in the Department of Mechatronics/Adaptronics. By now he is responsible for the development of structural health monitoring in the Department of Reliability and System Integration.

Dipl.-Ing. Christoph Axt, born in 1980, studied mechanical and process engineering at the Technische Universität Darmstadt, Germany. He started his career at the Fraunhofer Institute Laboratory of Structural Durability and System Reliability LBF in 2007. Two years later he changed to the spin-off of this institute called ISYS Adaptive Solutions GmbH and is now working there as vice product development manager.

Dipl.-Ing. Michael Matthias, born 1969, studied material sciences at the University of Applied Sciences in Osnabrück, Germany. After graduating in 1994 he worked as research assistant at the German Aerospace Center DLR in Braunschweig. In 2001 he joined the Fraunhofer LBF and became deputy head of the Department of Mechatronics/Adaptronics in 2003. Since 2012 he is head of Department Actuators and Sensors in the Fraunhofer LBF.

Prof. Dr.-Ing. Tobias Melz, born 1968, is heading the division of Smart Structures at the Fraunhofer Institute for Structural Durability and System Reliability LBF. He is also professor for adaptronic systems within the faculty of Mechanical Engineering at the Technische Universität Darmstadt, Germany, and is director of the Fraunhofer Alliance of Adaptronics. In 2012 Prof. Melz was appointed as division director of smart structures with currently four R&D departments in lightweight design, smart actuators, vibration control and signal conditioning.

Dr.-Ing. Heinz Kaufmann, born in 1960, studied mechanical engineering at the Technische Universität Darmstadt, Germany, and graduated in 1985. In 1998 he presented his doctoral thesis on “The Dimensioning of Cyclically-Loaded Thick-Walled Components of Cast Ductile Iron GGG-40 Considering Microstructural Degenerations from Casting” at Saarland University, Saarbrücken, Germany. He joined the Fraunhofer LBF in 1986 and was head of the competence centre ‘Component-Related Material Behaviour’ from 2003 to 2011. Since 2012 he is head of the department ‘Materials and Components’.


References

1 C.Bathias: Piezo electric fatique testing machines and devices, T. Sakai, Y. Ochi (Eds.): Proceedings of the third International Conference on Very High Cycle Fatigue, Society of Material Science, Japan (2004), pp. 472483Suche in Google Scholar

2 J.Tichý et al: Fundamentals of Piezoelectric Sensorics, Springer, Berlin (2010)10.1007/978-3-540-68427-5Suche in Google Scholar

3 T.Drögemüller, H.Atzrodt, C.Axt, A.Friedmann, M.Lilov, T.Melz: Hybrid high cycle variable amplitude fatigue testing machine, C.M. Sonsino, P.C. McKeighan (Eds.): Second International Conference on Material and Component Performance under Variable Amplitude Loading, Deutscher Verband für Materialforschung und -prüfung, Berlin (2009), pp. 945956Suche in Google Scholar

4 A.Friedmann, M.Lilov: Verbundprojekt: Hybride Hochfrequenzprüftechnik - hyHPT, LBF-Bericht Nr. 260231, Fraunhofer LBF [u. a.], Darmstadt (2010), http://edok01.tib.uni-hannover.de/edoks/e01fb11/654227535.pdfSuche in Google Scholar

Published Online: 2013-05-26
Published in Print: 2012-11-01

© 2012, Carl Hanser Verlag, München

Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/120.110388/html
Button zum nach oben scrollen