Home Technology Impact of High Pressure Hydrogen Atmosphere on the Mechanical Properties of Haynes 282 Superalloy
Article
Licensed
Unlicensed Requires Authentication

Impact of High Pressure Hydrogen Atmosphere on the Mechanical Properties of Haynes 282 Superalloy

  • Matthias Bruchhausen , Burkhard Fischer , Peter Hähner and Sebastian Soller
Published/Copyright: May 26, 2013
Become an author with De Gruyter Brill

Abstract

Haynes 282 alloy is a newly developed nickel-base superalloy, with properties focussed on high creep strength, thermal stability, good weldability and fabricability, which might qualify it as a substitute for established materials like Hastelloy-X or René-41 e.g. in aerospace applications. However, so far no information on the sensitivity for hydrogen environment embrittlement (HEE) has been published for this material. In the present work, tensile tests under hydrogen atmosphere have been carried out at room temperature and the results have been compared to those from tests under argon. Haynes 282 is found to show significant hydrogen embrittlement.

Kurzfassung

Die Legierung Haynes 282 ist eine neu entwickelte Nickelbasis-Superlegierung, deren Eigenschaften auf hohe Kriechfestigkeit, thermische Stabilität, gute Schweißbarkeit und Verarbeitbarkeit abzielen und die sie als Ersatz für etablierte Werkstoffe wie Hastelloy-X oder René-41, d.h. für Anwendungen in der Luftfahrt, qualifizieren können. Bisher wurden jedoch keine Informationen über die Sensibilität dieses Materials in Wasserstoffumgebungen (Hydrogen Environment Embrittlement (HEE)) veröffentlicht. In der diesem Beitrag zugrunde liegenden Arbeit wurden Zugversuche unter Wasserstoffatmosphäre bei Raumtemperatur durchgeführt und ihre Ergebnisse mit denen von Tests unter Argon verglichen. Es stellte sich heraus, dass die Legierung Haynes 282 extreme Wasserstoffversprödung zeigt.


Matthias Bruchhausen studied physics at the universities of Düsseldorf, Germany and Nantes, France. He received a PhD in physics at the Forschungszentrum Jülich, Germany in 2002. Since 2009 he is scientist at the European Commission's Joint Research Center at the Institute for Energy and Transport in Petten, The Netherlands.

Burkhard Fischer received his degree as electronics/electrical engineer at Rheinische Akademie, Köln, Germany in 1982. He is working as senior technician at the Institute for Energy and Transport of the Joint Research Centre in Petten, The Netherlands.

Peter Hähner is physicist holding a PhD from the University of Stuttgart, Germany and university lecturing qualifications in materials science and theoretical physics. He is currently head of JRC-IET's Safety of Future Nuclear Reactors unit. He is author of about 100 scientific articles on microstructural modelling of radiation damage and plastic deformation phenomena, (thermo-)mechanical testing incl. advanced monitoring and standardisation issues, as well as the characterization of metallic and ceramic materials.

Sebastian Soller graduated in Aerospace Engineering from Technische Universität München, Germany (TUM) in 2001. In 2008 he received his PhD in the characterization of injector elements for staged combustion cycle rocket engines. Since 2007, he works at Astrium Space Transportation in the department for Advanced Programs & Systems technologies. He is in charge of several research programs dealing with different aspects of advanced rocket propulsion systems.


References

1 W. T.Chandler: Hydrogen embrittlement and its control in hydrogen-fuelled engine systems, in: NASA Conference Publication 2065, Part I: Recent advances in structures for hypersonic flight, NASA-CP2065 (1978)Search in Google Scholar

2 M.Hoezel: Struktur und Gitterdynamik wasserstoffbeladener austenitischer Edelstähle, PhD thesis, Technische Universität Darmstadt (2004)Search in Google Scholar

3 A.Barnoush: Hydrogen embrittlement, revisited by in situ electrochemical nanoindentation, PhD-thesis, Universität des Saarlandes (2007)Search in Google Scholar

4 M. D.Danford, J. W.Montano: The interaction of hydrogen with metal alloys, NASA Technical Paper 3128, Marshall Space Flight Center, Huntsville, AL (1991)Search in Google Scholar

5 G.Bergmann: Untersuchungen zur Wasser-stoffversprödung von NiAl, TiAl und CMSX-6, Fortschritt-Bericht VDI Reihe 5, Nr. 406, VDI-Verlag, Düsseldorf (1995)Search in Google Scholar

6 Haynes International: Haynes 282 alloy data sheetSearch in Google Scholar

7 A.Ghoneim, O. A.Ojo: Microstructure and mechanical response of transient liquid phase joint in Haynes 282 superalloy, Materials Characterization62 (2011), pp. 17Search in Google Scholar

8 C. J.Boehlert, S. C.Longanbach: A comparison of microstructure and creep behaviour of cold rolled Haynes 230 alloy and Haynes 282 alloy, Mater. Sci. Eng. A528 (2011), pp. 48884898Search in Google Scholar

9 DIN EN ISO 6892-1: Metallische Werkstoffe - Zugversuch - Teil 1: Prüfverfahren bei Raumtemperatur, Beuth, Berlin (2009)Search in Google Scholar

10 Standard test method for determination of susceptibility of metals to embrittlement in hydrogen containing environments at high pressure, high temperature, or both, Annual Book of ASTM Standards 2006, Volume 03.02, Corrosion of Metals, Wear and Erosion (2006)Search in Google Scholar

11 Standard test methods for tension testing of metallic materials, Annual Book of ASTM Standards 2009, Volume 03.01, Metals - Mechanical Testing, Elevated and Low-Temperature Tests, Metallography (2009)Search in Google Scholar

12 DIN EN 2832: Wasserstoffversprödung von Stählen, Kerbzugversuch, Beuth, Berlin (1993)Search in Google Scholar

13 ASM Handbook Vol. 13: Corrosion in the Aerospace Industry (1998)Search in Google Scholar

14 L. G.Fritzmeier, W. T.Chandler: Hydrogen embrittlement - rocket engine applications, in: J.K.Tien, T.Cuafield: Superalloys, supercomposites and superceramics, Academic Press (1989), pp. 491524Search in Google Scholar

15 AFNOR NF EN 10002-1: Metallic materials: Tensile Testing Part 1: Method of test at ambient temperature, Paris (2001)Search in Google Scholar

16 G. E.Dieter: Mechanical Metallurgy, McGraw-Hill Book Company, London, 3rd edition (1988)Search in Google Scholar

17 Hydrogen Embrittlement Testing, ASTM Special Technical Publication543 (1972)Search in Google Scholar

18 R. P.Jewett, R. J.Walter, W. T.Chandler, R. P.Frohmberg: Hydrogen environment embrittlement of metals, NASA-CR-2163, Rocketdyne, (1973)Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2012-09-01

© 2012, Carl Hanser Verlag, München

Downloaded on 5.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/120.110365/pdf
Scroll to top button