Home Technology Numerical and Experimental Investigations on the Defect Tolerance of Brazed Steel Joints
Article
Licensed
Unlicensed Requires Authentication

Numerical and Experimental Investigations on the Defect Tolerance of Brazed Steel Joints

  • Adrian Lis , Michael Koster and Christian Leinenbach
Published/Copyright: May 26, 2013
Become an author with De Gruyter Brill

Abstract

Based on the combination of FE-calculations and experimental results a defect assessment procedure for brazed steel joints was developed in the present work, which reliably takes into account the effect of different steel heat treatments and defined artificial defects in the braze layer. Tensile tests with defect free joints consisting of X3CrNiMo13-4 as substrate material and of Au-18wt.-%Ni as filler metal serve as a basis to simulate the elastic-plastic material behaviour. By correlating experimental and numerical methods, failure criteria could be derived which indicate and predict failure of brazed components. These failure criteria were also presumed to calculate the maximum tolerable loads for specimens containing different defects. The results show that the simulations correlate very well with the experimental results. Furthermore, they provide a possibility to analyze the failure behaviour for different defect types and the influence of different heat treatments on the joint strength.

Kurzfassung

Im Rahmen der vorliegenden Arbeit wurde basierend auf der Kombination aus FE-Berechnungen und experimentellen Ergebnissen eine Methode der Fehlerbeurteilung für Stahllötverbindungen entwickelt, wobei der Einfluss verschiedener Wärmebehandlungen und definiert künstliche Defekte der Lötschicht berücksichtigt werden. Das elastisch-plastische Materialverhalten wurde mittels Zugfestigkeits-prüfungen von hartgelöteten, defektfreien Verbunden aus Stahl X3CrNiMo13-4 und Lot Au-18wt.-%Ni untersucht. Durch Korrelation von experimentellen und numerischen Methoden konnten Versagenskriterien von hartgelöteten Verbindungen abgeleitet, sowie auch auf fehlerhafte T-Stoß-Proben, übertragen werden. Die Untersuchungen zeigen eine sehr gute Übereinstimmung der experimentellen Ergebnisse mit den Simulationsergebnissen. Somit können FE-Simulationen neben der Abschätzung des Einflusses von Lötfehlern auch zur Berücksichtigung verschiedener Wärmebehandlungsverfahren eingesetzt werden.


Dipl.-Ing. Adrian Lis, born in 1986, studied mechanical engineering at the Technical University of Kaiserslautern, Germany, and at the University of Technology Luleå, Sweden. After finishing his diploma thesis in 2011 at the Swiss Federal Laboratories for Materials Science and Technology, Empa, Switzerland, he started to work there on his PhD thesis.

Dr.-Ing. Michael Koster, born in 1978, studied at the University of Kaiserslautern. In collaboration with the ENI Metz and the German-French University in Saarbrücken he finished his studies with a german-french double diploma in mechanical engineering. During his PhD at the Institute of Materials Science and Engineering at the University of Kaiserslautern from 2005–2010, M. Koster studied the very-high cycle fatigue behaviour of railway wheel steels. Since 2010 he is working at the Swiss Federal Laboratories for Materials Science and Technology (Empa) on the integrity of brazed steel joints.

Dr.-Ing. Christian Leinenbach, born in 1974, studied Physics and Materials Science and Engineering at Saarland University, Saarbrücken, Germany, and at Luleå University of Technology, Sweden. In 2000, he graduated (Dipl.-Ing.) at Saarland University. In the same year, he transferred to the Institute of Materials Science and Engineering at the University of Kaiserslautern, Germany, where completed his dissertation on the cyclic deformation behaviour of surface modified titanium alloys in 2004. In 2005, he moved to the Swiss Federal Laboratories for Materials Science and Technology (Empa), where he is currently Head of the Advanced Joining Technologies Group.


References

1 R. K.Shiue, S. K.Wu, S. Y.Chen: Infrared brazing of TiAl intermetallic using BAg-8 braze alloy, Acta Materialia51 (2003), pp. 19912004Search in Google Scholar

2 T.Ma, M.Zeng, Y.Ji, H.Zhu, Q.Wang: Investigation of a novel bayonet tube high temperature heat exchanger with inner and outer fins, International Journal of Hydrogen Energy36 (2011), pp. 37573768Search in Google Scholar

3 J.Nowacki, P.Swider: Producibility of brazed high-dimension centrifugal compressor impellers, Journal of Materials Processing Technology133 (2003), pp. 174180Search in Google Scholar

4 M. E.Kassner, T. C.Kennedy, K. K.Schrems: The mechanism of ductile fracture in constrained thin silver film, Acta Materialia46 (1998), pp. 64456457Search in Google Scholar

5 G. W.Marshall, R. A.Ainsworth: The fracture behaviour of a welded tubular joint: an ESIS TCI-3 round robin on failure assessment methods Part II: R6 analysis, Engineering fracture mechanics69 (2002), pp. 11111118Search in Google Scholar

6 S.Webster, A.Bannister: Structural integrity assessment procedure for Europe - of the SINTAP programme overview, Engineering fracture mechanics67 (2000), pp. 481514Search in Google Scholar

7 C.Leinenbach, H.-J.Schindler, T. A.Baser, N.Rüttimann, K.Wegener: Quasistatic fracture behaviour and defect assessment of brazed soft martensitic stainless steel joints, Engineering Failure Analysis17 (2009), pp. 672682Search in Google Scholar

8 C.Kanchanomai, W.Limtrakarn, Y.Mutoh: Fatigue crack growth behavior in Sn-Pb eutectic solder/copper joint under mode I loading, Mechanics of Materials37 (2005), pp. 11661174Search in Google Scholar

9 M.Ghovanlou: Mechanical reliability characterization of low carbon steel brazed joints with copper filler metal, Materials Science and Engineering A528 (2011), pp. 6146615610.1016/j.msea.2011.04.070Search in Google Scholar

10 N. S.Bosco, F. W.Zok: Strength of joints produced by transient liquid phase bonding in the Cu-Sn system, Acta Materialia53 (2005), pp. 20192027Search in Google Scholar

11 C.Leinenbach, H.Lehmann, H. J.Schindler: Mechanisches Verhalten und Fehlerempfindlichkeit von Hartlötverbindungen, Materials Testing49 (2007), pp. 29Search in Google Scholar

Published Online: 2013-05-26
Published in Print: 2012-09-01

© 2012, Carl Hanser Verlag, München

Downloaded on 4.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/120.110372/html
Scroll to top button